Computer Model More Accurately Predicts Flight Delays
Researchers at Binghamton University have devised a new computer model that can more accurately predict delays faster than anything currently in use. The multilevel input layer artificial neural network handles categorical variables with a simple structure to help airlines easily see the relationships between input variables (such as weather) and outputs (flight delays).
Air traffic controllers at a busy airport can also use this information as a supplement to improve the management the of airport traffic. The team plans to continue to explore variables that could be applied to the new model. The group also wants to apply the work beyond flight scheduling and use fuzzy logic — computing based on degrees of truth rather than the usual true/false dichotomy — to expand to more real-world applications.
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



