Stand-Off Scanning and Pointing with Risley Prisms
With the ever increasing threat of improvised explosive devices, both in the military arena and the civilian realm, there is a growing demand for technologies with the ability to detect explosives and their precursors from a safe stand-off. While a wide variety of technologies have been investigated for this application, laser-based spectroscopic techniques designed to detect chemical traces on personnel, vehicles and other objects have garnered a lot of attention. These laser-based techniques include Raman spectroscopy, laser induced breakdown spectroscopy (LIBS), diffuse reflectance spectroscopy (DRS), and photothermal spectroscopy (PTS), among others. Laser-based approaches concentrate a large amount of power on a single target location, which enables reasonable signal-to-noise ratio (SNR) to be obtained despite the 1⁄R2 drop-off in return signal strength (where R represents stand-off distance).

In the interest of adapting these standoff explosive detection technologies to the widest number of applications and platforms, the ideal scanner would be compact, lightweight, low power and vibration insensitive. Further benefit is achieved with a scanner that can both continuously scan the field of regard to look for potential explosives and then rapidly point to a suspected location and confirm the existence of an explosive using high resolution spectroscopic information. Potential approaches include gimbal type mirrors, galvo scanners, fast steering mirrors, and Risley Prism scanners.
While gimbal scanners are used for a wide variety of scanning applications, their carried axis designs typically result in much larger, heavier designs requiring more power to drive. Non-carried axis systems (such as galvanometer scanners) are challenged when large apertures are required. Fast steering mirrors can provide the necessary response time and aperture but they are generally limited to small fields of view. Oftentimes a better solution to these scanner requirements is the Risley prism scanner, which can achieve all of the requirements in a smaller package requiring less operating power.
Standoff Trace Explosive Detection

Risley Prism Scanner Design for Explosive Detection
As shown in Figure 1, two identical prisms rotating about a common optic axis comprise a Risley prism pair. Maximum deviation occurs when the prisms are in alignment (a) and no net deviation occurs when they are in opposition (c). As a result, any point in the conical field of view can be addressed by an intermediate angle between the pair. Mechanical Arrangement A Risley Prism scanner is realized in practice with the optical-mechanical arrangement shown in Figure 2. Hollow core brushless motors are ideal for providing high torque (acceleration), smooth scanning (electronically controlled commutation), and low operating power since the shaft (i.e. prisms) is thin and close to the axis of rotation with a resulting low moment of inertia. In practice, peak powers of 10’s of watts can be obtained for 25mm and larger clear aperture systems that have full field response times on the order of 100 milliseconds. Duplex bearings minimize axial play and provide high pointing accuracy, which is supported with optical encoder-based position sensors to provide high-resolution angular measurement. For example, 20,000 count encoders are easily obtained in practice and provide submilliradian level pointing resolution.

Risley Prism systems can be used in either a steering or scanning configuration, depending on the speed of the spectroscopic technique being utilized. For spectroscopic techniques requiring longer integration times, the RP would typically be used in a straightforward step-stare configuration, tracing out a predetermined pattern. For techniques with shorter integration time requirements, the RP can be used in a scanning configuration. Oftentimes combining scanning and step-stare operation is the ideal approach for a search/confirm operating scenario. Constant prism rotation angles minimize system power requirements while providing flexible scanning patterns. Figure 3 shows the spiral pattern and rosette patterns that can be achieved in a scanning mode of operation: the spiral scan is accomplished by rotating the two prisms in the same direction with a small velocity difference between the prism pair, while the rosette is accomplished by counter-rotating the prisms. Figure 4 shows a Risley Prism assembly that embodies this design. The 50 mm clear aperture system measures 130 mm in diameter by 116 mm long and weighs 2.8 kg. Recently, a standoff DRS trace explosive detection system used a Risley Prism scanner to achieve wide field of coverage in an overall compact package.
Conclusions

This article was written by Craig Schwarze, Principal Systems Engineer, OPTRA, Inc. (Topsfield, MA). For more information, Click Here .
Top Stories
INSIDERRF & Microwave Electronics
FAA to Replace Aging Network of Ground-Based Radars
PodcastsDefense
A New Additive Manufacturing Accelerator for the U.S. Navy in Guam
NewsSoftware
Rewriting the Engineer’s Playbook: What OEMs Must Do to Spin the AI Flywheel
Road ReadyPower
2026 Toyota RAV4 Review: All Hybrid, All the Time
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
Webcasts
Energy
Hydrogen Engines Are Heating Up for Heavy Duty
Energy
SAE Automotive Podcast: Solid-State Batteries
Power
SAE Automotive Engineering Podcast: Additive Manufacturing
Aerospace
A New Approach to Manufacturing Machine Connectivity for the Air Force
Software
Optimizing Production Processes with the Virtual Twin



