High-Tech Bird Watching Could Lead to Shapeshifting Airplane Wings
An international team of engineers and biologists will gain unprecedented insights into how birds fly so efficiently and then use that knowledge to build unmanned aircraft with shapeshifting wings. These planes should be lighter, faster and dramatically more maneuverable than today’s stiff-winged aircraft.
Recently awarded a $6 million grant from the Air Force Office of Scientific Research, the researchers will first produce the most detailed analysis of bird flight ever made for an aerospace engineering project. The project is headed by Daniel Inman, the Clarence “Kelly” Johnson Professor and a professor of aerospace engineering at the University of Michigan, with researchers at Stanford and the University of California, Los Angeles leading parts of the effort.
While modern, rigid-wing airplanes use drag-inducing flaps and slats for control, birds manipulate individual feathers or clusters of feathers on their wings, creating surfaces that control flight without wasting energy.
“With new materials, advanced sensing and control techniques, and inventive methods for observing birds in flight, our team will begin to bring avian efficiency and agility to aircraft,” said Inman.
Better efficiency will make battery-powered unmanned aircraft more practical, whereas many now rely on fossil fuels. The team will also explore whether their new wings and tail could work on small, crewed aircraft.
Rather than burdening small birds with sensors to measure airflow, pressure and other forces, David Lentink, an assistant professor of mechanical engineering at Stanford University, has developed a system that measures pressure disturbances in the air around the bird.
“It is really exciting that we can now finally study bird flight with an engineering eye,” said Lentink, who is also a biologist. “The time-resolved forces on the wings, in combination with 3D wing shape measurements at 1,000 frames per second, are key to deciphering how birds change shape to control the aerodynamic force they generate.”
Other biologists on the project will mount cameras on the backs of large species such as eagles. These will provide close-up views of the wings as the birds take off, glide, maneuver and land. A third group will explore how wing muscles work together to manipulate the shape of the wing.
The engineers will investigate a variety of avenues toward producing morphing wings for aircraft. They’ll test materials that alter wing shape in response to stimuli such as temperature changes or electric current. The researchers believe they can assemble structures resembling the bone and muscle in birds’ wings through 3D printing. To regulate the shapes of the wings, another group of engineers will program the control computer using techniques that mimic neurons in the brain and develop sensors that can be distributed through the wing like nerves. These will report airflow and pressure data back to the computer—information that birds instinctively collect and use in flight.
“A biological neural network can process signals at a speed comparable to a supercomputer while weighing only one millionth as much and consuming one millionth the power,” said Yong Chen, a professor of mechanical and aerospace engineering at the UCLA. Chen’s brain-like circuits will be able to quickly and efficiently process information from the sensors, using it to choose the best wing shapes to maneuver the aircraft.
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



