Prototype Rocket Engine for a Nanosat Launch Vehicle
A paper discusses a prototype rocket engine for a suborbital Reusable Nanosat Launch Vehicle (RNLV). The engine must operate with thrust levels from 3,000 to 5,000 lbf. The engine is comprised of three major subassemblies: the injector, igniter, and the combustion chamber nozzle. Propellants are introduced and mixed in the combustion chamber utilizing a combination of triplet and unlike doublet injector elements. In addition, film cooling is provided in order to extend the life of the ablative chamber. Ignition is accomplished with solid propellant ports mounted on the side of the chamber.
Ten static fire tests have been completed to validate the design and to characterize the engine's performance. Initial testing was conducted to validate the ignition algorithm and verify the engine's basic integrity at startup. Further testing was conducted to verify engine performance before flight testing. Data shows that the engine can operate at thrust levels between 2,500 and 5,074 lbf. This successful engine development serves as a precursor to a future NLV first-stage engine that will utilize LOX-propylene for added performance.
This work was done by George Haberstroh and Eric Besnard of California State University, Long Beach; and Matthew Baker and John Garvey of Garvey Spacecraft Corp. for the Air Force Research Laboratory.
AFRL-0111
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



