Artificial Intelligence Helps Soldiers Learn Faster
New technology allows U.S. soldiers to learn 13-times faster than conventional methods, and Army researchers said this may help save lives.
At the U.S. Army Research Laboratory, scientists are improving the rate of learning even with limited resources. It's possible to help soldiers decipher hints of information faster and come up with quicker solutions, such as recognizing threats like a vehicle-borne improvised explosive device (IED) or potential danger zones from aerial war zone images.
The researchers relied on low-cost, lightweight hardware and implemented collaborative filtering, a well-known machine learning technique on a state-of-the-art, low-power Field Programmable Gate Array platform to achieve a 13.3 times speedup of training compared to a state-of-the-art optimized multi-core system and 12.7 times speedup for optimized GPU systems.
The new technique consumed far less power too. Consumption charted 13.8 watts, compared to 130 watts for the multi-core and 235 watts for GPU platforms, making this a potentially useful component of adaptive, lightweight tactical computing systems.
Dr. Rajgopal Kannan, an ARL researcher, said this technique could eventually become part of a suite of tools embedded on the next generation combat vehicle, offering cognitive services and devices for warfighters in distributed coalition environments. Developing technology for the next generation combat vehicle is one of the six Army Modernization Priorities the laboratory is pursuing.
Kannan collaborates with a group of researchers at the University of Southern California, namely Prof. Viktor Prasanna and students from the data science and architecture lab on this work. ARL and USC are working to accelerate and optimize tactical learning applications on heterogeneous low-cost hardware through ARL's West Coast open campus initiative.
This work is part of the Army's larger focus on artificial intelligence and machine learning research initiatives pursued to help gain a strategic advantage and ensure warfighter superiority with applications such as on-field adaptive processing and tactical computing. Kannan said he is working on developing several techniques to speed up AI/ML algorithms through innovative designs on state-of-the-art inexpensive hardware.
Top Stories
INSIDERRF & Microwave Electronics
FAA to Replace Aging Network of Ground-Based Radars
PodcastsDefense
A New Additive Manufacturing Accelerator for the U.S. Navy in Guam
NewsSoftware
Rewriting the Engineer’s Playbook: What OEMs Must Do to Spin the AI Flywheel
Road ReadyPower
2026 Toyota RAV4 Review: All Hybrid, All the Time
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
Webcasts
Automotive
Hydrogen Engines Are Heating Up for Heavy Duty
Power
SAE Automotive Podcast: Solid-State Batteries
Automotive
SAE Automotive Engineering Podcast: Additive Manufacturing
Aerospace
A New Approach to Manufacturing Machine Connectivity for the Air Force
Software
Optimizing Production Processes with the Virtual Twin



