Adaptive Materials Could Help Protect Rotorcraft
Engineers developed a technique that causes a composite material to become stiffer and stronger on-demand when exposed to ultraviolet light. This on-demand control of composite behavior could enable a variety of new capabilities for future Army rotorcraft design, performance, and maintenance.
The composite materials could become 93% stiffer and 35% stronger after a five-minute exposure to ultraviolet light. Future structures based on this work may lead to new composites with controlled structural damping and low weight that could enable high-speed rotorcraft concepts that are currently not feasible.
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



