Launching the Fastest Plane of the Future
It's a sci-fi concept that's at the center of a 25-year exploratory project: building a hypersonic aircraft that takes off from the runway and doesn't need a rest, inspection or repair after it lands – unlike the space shuttle – but can zip back around the world within an hour of landing. University of Cincinnati researchers are developing the validation metrics that could help predict the success or failure of such a model before it is even built, as test data becomes available from component, to sub-system, to the completely assembled air vehicle.

"The very early stages of testing examine the concept of a plane that would fly as much as 10 times the speed of sound, with Mach 5 being the starting point," says Allemang. "In order to be ready to build that airplane, there is a lot of technology that will need to improve over the next 20 years, and there aren't the resources to do the prototype testing like what was done in the space race of the '50s and '60s. So, we need to improve analytical capabilities to better predict what could happen."
Allemang says further testing of the PCA validation metric is expected to be conducted on an aircraft panel later this year by the Structural Sciences Center at the Air Force research labs at Wright-Patterson Air Force Base.
Top Stories
INSIDERManufacturing & Prototyping
How Airbus is Using w-DED to 3D Print Larger Titanium Airplane Parts
INSIDERManned Systems
FAA to Replace Aging Network of Ground-Based Radars
NewsTransportation
CES 2026: Bosch is Ready to Bring AI to Your (Likely ICE-powered) Vehicle
NewsSoftware
Accelerating Down the Road to Autonomy
EditorialDesign
DarkSky One Wants to Make the World a Darker Place
INSIDERMaterials
Can This Self-Healing Composite Make Airplane and Spacecraft Components Last...
Webcasts
Defense
How Sift's Unified Observability Platform Accelerates Drone Innovation
Automotive
E/E Architecture Redefined: Building Smarter, Safer, and Scalable...
Power
Hydrogen Engines Are Heating Up for Heavy Duty
Electronics & Computers
Advantages of Smart Power Distribution Unit Design for Automotive...
Unmanned Systems
Quiet, Please: NVH Improvement Opportunities in the Early Design...



