Autonomous Vehicles Demonstrate Ground-Air Cooperation
Carnegie Mellon University (CMU) and Sikorsky, a Lockheed Martin company, recently announced a joint autonomy demonstration that proved the capability of new, ground-air cooperative missions. The demonstration, which took place on Oct. 27 at Sikorsky's Development Flight Center in West Palm Beach, FL, used a UH-60MU Black Hawk helicopter enabled with Sikorsky's MATRIX Technology and CMU’s Land Tamer autonomous unmanned ground vehicle (UGV).
The goal for such missions is to prevent warfighters' exposure to hazardous conditions, such as chemically or radiologically contaminated areas.
"The teaming of unmanned aerial vehicles (UAVs) and unmanned ground vehicles, as demonstrated here, has enormous potential to bring the future ground commander an adaptable, modular, responsive and smart capability that can evolve as quickly as needed to meet a constantly changing threat," said Paul Rogers, director, U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), in a statement announcing the demonstration’s results. "The cooperative effort between the Army labs, academia, and industry to bring solutions to the warfighter is exciting to see."
The demonstration was for TARDEC, through the Robotics Technology Consortium, which sponsored the Extending the Reach of the Warfighter through Robotics (ERWR) project. A video of the demonstration is available on YouTube.
Provided by the U.S. Army Aviation and Missile Research Development and Engineering Center's Aviation Applied Technology Directorate, the Black Hawk helicopter was modified with the Sikorsky autonomy kit, MATRIX, to deliver the required UAV capabilities. MATRIX was launched in 2013 for autonomous and optionally piloted vertical take-off and landing aircraft.
"The UH-60MU aircraft is a prototype of the UH-60 in a 'fly-by-wire' configuration," said William D. Lewis, AMRDEC director of Aviation Development. "'Fly-by-wire' technology is the foundational enabler that facilitates autonomous aircraft operations."
In the demonstration, the Black Hawk helicopter was operated in coordination with a UGV, developed by Carnegie Mellon's National Robotics Engineering Center (NREC). The UGV Land Tamer all-terrain vehicle combined key elements of several NREC autonomous systems to support missions in difficult environments.
"We were able to demonstrate a new technological capability that combines the strengths of air and ground vehicles," said Jeremy Searock, NREC technical project manager. "The helicopter provides long-range capability and access to remote areas, while the ground vehicle has long endurance and high-precision sensing."
During the demonstration mission, the unmanned helicopter picked up the UGV, flew a 12-mi (19-km) route, delivered it to a ground location, and released it. The drop-zone collaboration between the two autonomous systems demonstrated a “uniquely differentiating capability,” the organizations proclaimed.
The UGV autonomously navigated the course for more than 6 mi (10 km), while using its onboard chemical, biological, radiological, and nuclear (CBRN) sensors to detect simulated hazards and delivered this information back to a remote ground station. The UGV was optionally tele-operated to explore hazard sites in greater detail, when necessary.
The exercise culminated a 19-month project between Carnegie Mellon's NREC and Sikorsky. The collaboration between the UAV and UGV demonstrated the effectiveness of unmanned systems in addressing logistics needs in unknown or dangerous environments.
Top Stories
INSIDERManufacturing & Prototyping
How Airbus is Using w-DED to 3D Print Larger Titanium Airplane Parts
INSIDERManned Systems
FAA to Replace Aging Network of Ground-Based Radars
NewsTransportation
CES 2026: Bosch is Ready to Bring AI to Your (Likely ICE-powered) Vehicle
NewsSoftware
Accelerating Down the Road to Autonomy
EditorialDesign
DarkSky One Wants to Make the World a Darker Place
INSIDERMaterials
Can This Self-Healing Composite Make Airplane and Spacecraft Components Last...
Webcasts
Defense
How Sift's Unified Observability Platform Accelerates Drone Innovation
Automotive
E/E Architecture Redefined: Building Smarter, Safer, and Scalable...
Power
Hydrogen Engines Are Heating Up for Heavy Duty
Electronics & Computers
Advantages of Smart Power Distribution Unit Design for Automotive...
Unmanned Systems
Quiet, Please: NVH Improvement Opportunities in the Early Design...



