3D-Printed Titanium Alloy for Aerospace
A super-strong, highly ductile, super-light titanium-based alloy was developed using 3D printing. The process provides a method to design alloys with unprecedented structures and properties for various structural applications.
The method involves melting and mixing two different alloys, such as titanium alloy powder and stainless steel powder, using a focused laser beam. By controlling parameters like the laser power and its scanning speed during the 3D printing process, the team successfully created the non-uniform composition of the elements in the new alloy in a controllable way.
These unique microstructures provide an excellent work-hardening capacity of over 300 megapascals, which guarantees a large safety margin prior to fracture and is useful in structural applications.
Top Stories
INSIDERManufacturing & Prototyping
How Airbus is Using w-DED to 3D Print Larger Titanium Airplane Parts
INSIDERManned Systems
FAA to Replace Aging Network of Ground-Based Radars
NewsTransportation
CES 2026: Bosch is Ready to Bring AI to Your (Likely ICE-powered) Vehicle
NewsSoftware
Accelerating Down the Road to Autonomy
EditorialDesign
DarkSky One Wants to Make the World a Darker Place
INSIDERMaterials
Can This Self-Healing Composite Make Airplane and Spacecraft Components Last...
Webcasts
Defense
How Sift's Unified Observability Platform Accelerates Drone Innovation
Automotive
E/E Architecture Redefined: Building Smarter, Safer, and Scalable...
Power
Hydrogen Engines Are Heating Up for Heavy Duty
Electronics & Computers
Advantages of Smart Power Distribution Unit Design for Automotive...
Unmanned Systems
Quiet, Please: NVH Improvement Opportunities in the Early Design...



