Laser Detection System Technology
While most ordnance is now laserguided, there is still much work to be done on the defensive detection of laser designators. Hence the growing need for advanced laser-warning systems (LWS). While multiple techniques can be used to detect and triangulate the position of an incident laser designator, one of the current front-runners in the race for positional accuracy is Excelitas’ High Angular Resolution Laser Irradiance Detector (HARLID™).
How Does It Work?
The HARLID™ effectively encodes digitally the AOA of incident laser beams from laser guidance systems, designators, beam riders and range finders; furthermore it enables the detection of “friend-or-foe” of said laser designator through Pulse Repetition Frequency (PRF) detection and laser technology used through coarse wavelength band detection.
Each PIN chip has eighteen-pixels, half of which are high-sensitivity channels, meant to detect lower incident powers, while the other half are low-sensitivity channels with smaller apertures and built-in optical attenuation of about 15dB , meant to detect higher incident laser power with reduced risk of saturating the back-end electronics. The detectors are designed with a guard ring to insure good signal-to-noise ratios (SNR) and a dynamic range of up to about 6 decades of incident power densities through overlapped coverage of both the high- and low-sensitivity channels.
The projection of the incident laser beam through the HARLID™’s digital Gray code mask onto multiple channels in parallel, isolated from each other using individual “light guides”, depending on the angular displacement of the incident laser beam in a plane perpendicular to the longitudinal axis of the detector array, produces a linear shift of the representation of the apertures of the Gray code mask upon the individual pixels of the detector array and thus a different AOA-specific binary code (Figure 5). In other words, the HARLID™ module directly encodes and measures the AOA subtended by the projection through the shadowing Gray code mask of the incident collimated laser beam.
Through careful design of the various anti-reflection coatings, the overall performance at 1060nm is optimized in such a way that when both the silicon and InGaAs chips respond to the incident laser, its wavelength is most likely in the transition region. This fairly coarse wavelength detection still yields a good indication of the technology being used, be it lower-end red or 905nm (near-IR) lasers or higher-end, higher-power 1060nm (YAG) or newer 1550nm (IR, eye-safe) equipment.
Since both the high- and low-sensitivity channels are illuminated through a single mask, different binary codes are generated respectively for the same incident collimated beam. High- and lowsensitivity specific look-up tables (LUT) are used to determine the AOA (Figure 7). The highlighted bit in each AOAspecific digital code clearly shows that a single bit will vary as the incident laser moves towards normal incidence or viceversa through each of the 64 intervals.
Deployment Strategies and Electronics
Signal processing can be handled through an analog back-end, which converts each individual photocurrent into voltages through trans-impedance amplifiers (TIAs) and then monitors the signal levels of the reference channels to ease the discrimination of the “1” or “0” status of each bit. High-pass filtering allows the rejection of DC light sources and background light conditions. The electronics must detect individual pulses for typical PRF used in the field; a system designed with a slow response rate will distort and soften the rising edges of detected pulses, making the discrimination of logical state more complex and more prone to errors. Furthermore, the HARLID™’s multiple reference detectors ease discrimination in non-uniform illumination conditions (common for long–range illumination) and offsets the baseline environmental illumination level.
Comparator circuits (CCs) are used to set the logical state of each individual bit; it is highly dependent on the performance of a pulse detection circuit (PDC). The PDC synchronizes the output of the electronics with the arrival of each laser pulse and therefore properly latch the individual CC. Using a summing amplifier to average each of the reference channels, the PDC can produce a “detection pulse” which is fed to another CC with its threshold set above typical noise levels. The output of this last CC can then be used to correctly latch all the other CCs and, therefore, synchronize the reported binary code/AOA to the incoming laser pulses.
Future-Proof Design and Conclusions
The HARLID™ is truly a unique component that offers lots of opportunities for LWR system designers with little tradeoffs and can be customized and modified to follow new trends, such as new laser technologies, in the military market. While highly-integrated components such as the HARLID™ may seem daunting when first evaluated, the benefits far outweigh the required efforts needed for a thorough evaluation. Alternative AOAdetection strategies typically require multiple detectors positioned at specific locations across the LWS-equipped vehicle, more complex processing of signal that must be routed through the mainframe of said vehicle and triangulation algorithms that aim to effectively mimic the AOA-digitalization performed directly by the HARLID™ module.
This article was written by Éric Desfonds, Eng., Application Engineer, High Performance Sensors & Defense (Vaudreuil-Dorion, Canada). For more information, Click Here .
Top Stories
INSIDERManned Systems
New Copper Alloy Could Provide Breakthrough in Durability for Military Systems
INSIDERManned Systems
Boeing to Develop New Space Force Nuclear Communications Satellites
INSIDERAerospace
TEWS Introduces First VITA 93 QMC Modules
INSIDERCommunications
Metamaterials Antenna Makes Generational Leap in Multi-Band Connectivity
INSIDERAerospace
Regulation and Technology Changes Needed for Drone Detection, Mitigation in US...
INSIDERRF & Microwave Electronics
Paris Air Show: New Aerospace Technologies, Updates and Research
Webcasts
Software
Enhancing Automotive Software Efficiency with vECU-based...
Energy
Sustainable Transportation Summit
Software
Optimizing Electric Aircraft Battery Design with Digital Twins...
Medical
Precision Under Pressure: The Centerless Grinding Advantage in...
Automotive
Automotive Margin Survival: Virtual Integration & Continuous...