Patterning of Polycrystalline Bi2Te3 Thin Films on Silicon
Standard photolithographic and etching recipes can be used, with suitable adaptations.
Experiments in patterning of thin films of polycrystalline bismuth telluride (Bi2Te3) on silicon substrates have been performed. Bi2Te3 is representative of a family of thermoelectric materials that are well suited for use in extracting electric energy from thermal gradients associated with flows of waste heat at temperatures in the approximate range of 0 to 150°C. Techniques and processes for fabricating macroscopic thermoelectric devices from bulk thermoelectric materials are mature and well known, but the same cannot yet be said concerning the fabrication of microscopic thermoelectric devices. The experiments reported here were performed as part of a continuing effort to develop capabilities for fabrication (including mass production) of microscopic thermoelectric devices, with a view toward eventually enabling the incorporation of them as integral parts of micro-electromechanical systems (MEMS) that could also include heat exchangers, sensors, actuators, and/or flow channels. Thus, the development of microscopic thermoelectric devices could benefit from the established industrial infrastructure for manufacturing MEMS and other silicon-based microsystems.

The approach followed in the experiments involved a standard procedure of (1) creating the appropriate patterns by photolithography, then (2) implementing the patterns by use, variously, of wet chemical etching or dry plasma etching to remove the Bi2Te3 from the areas outside the patterns. Established recipes for photolithography and for wet etching and dry plasma etching were used, with suitable modifications to adapt them to the materials and geometry of interest.
The primary adverse effect encountered in the experiments was delamination of Bi2Te3 during the development step of the photolithographic process. As shown in the figure, the Bi2Te3 adhered on and around areas containing the metal pads, but in some open areas in which the Bi2Te3 rested on bare SiO2, the Bi2Te3 was removed. It has been hypothesized that this delamination could be a result of lack of chemical bonding between the Bi2Te3 and the SiO2 surface. However, such delamination is of little concern inasmuch as in most foreseeable applications, metal pads (to which Bi2Te3 adheres, as was shown) must be included under Bi2Te3 posts to provide electrical connections.
This work was done by Brian Morgan and Patrick Taylor of the Army Research Laboratory.
ARL-0032
Top Stories
INSIDERManufacturing & Prototyping
NASA’s Quiet Supersonic Demonstrator Jet Completes First Flight
INSIDERDefense
AUSA 2025: The Army's New Anti-Vehicle Terrain Shaping Munition is Ready for...
INSIDERManufacturing & Prototyping
AUSA 2025: Secretary Driscoll Wants Army to Save Time and Money by 3D-Printing...
INSIDERDesign
Helsing Unveils New Autonomous Fighter Jet 'CA-1 Europa'
PodcastsManned Systems
Autonomous Targeting Systems for a New Autonomous Ground Vehicle
INSIDERAerospace
AUSA 2025: New CMOSS Chassis, Plug-in-Card Prototypes in Development for Army...
Webcasts
Software
Smarter Machining from Design to Production: Integrated CAM...
AR/AI
Software-Defined Vehicle Summit 2025
Automotive
Leveraging Augmented Reality and Virtual Reality to Optimize...
Aerospace
Vibroacoustic and Shock Analysis for Aerospace and Defense...
Energy
Vehicle Test with R-444A: Better-Performing R-1234yf Direct...



