Effect of Laser Noise on an Analog RF/Photonic Link
This methodology applies to many systems utilizing intensity modulation of laser beams.
Aset of equations has been formulated to enable quantification of several aspects of the performance of an analog photonic communication link as affected by laser noise. A procedure for measuring the laser noise has been devised to provide laser-noise data for use in the equations. The equations and procedure are generally applicable to diverse analog photonic links, in the design and operation of which laser noise is of great concern. Analog photonic links have been found to be useful as subsystems, radio-antenna-arraying systems, optoelectronic oscillators, and wide-band signal-processors.
The equations are derived from first principles, using what is known of (1) the optical response of a generic Mach- Zehnder modulator to the DC bias and RF modulation input voltages and (2) the RF response of a generic photodiode to the modulated laser signal, along with a few simplifying assumptions. The forms of the equations have been chosen to emphasize the effects of laser noise.
In addition to laser noise, thermal noise at the input and output ends of the link and shot noise originating in the photodiode are taken into account. The equations include adjustable parameters, representing magnitudes of various components of the modulator and photodiode responses that must be determined empirically. There are also adjustable parameters for the laser power, the proportionality between the square root of the laser power and the electric field in the laser beam, and the fractions of laser-beam power remaining after incurring losses in propagation through the Mach-Zehnder modulator and the optical fiber. The performance measures calculated by the equations include the RF gain, RF noise figure, compression dynamic range, and spurious-free dynamic range.
In the experimental setup for measuring laser noise (see Figure 2), the output of the laser of interest is sent through a variable optical attenuator to a photodiode, the output of which includes a DC photocurrent (Idc) that is measured. The RF component of the photodiode output is amplified by an RF amplifier having gain Gamp and noise figure NFamp. The output of the RF amplifier is sent to an electronic spectrum analyzer, which is used to measure the RF spectral density of total noise.
This work was done by Vincent J. Urick, Preetpaul S. Devgan, Jason D. McKinney, and James L. Dexter of the Naval Research Laboratory.
Top Stories
INSIDERImaging
Blue Ghost Arrives in Lunar Orbit, Prepares for Landing
NewsUnmanned Systems
Closing Gap to Leverage Enhanced Computational Power for SDV Advancement
ArticlesTransportation
Hybrid Powertrains in the Product Mix
Technology ReportMaterials
Lighter, Recyclable Body Seal from Cooper Standard Wins SAA Award
ProductsElectronics & Computers
INSIDERSemiconductors & ICs
Researchers Achieve Breakthrough in New Design of Superconducting Quantum...
Webcasts
Manufacturing & Prototyping
Quickly Prototyping Custom Textures on Automotive Parts
Unmanned Systems
March 2025 Automated and Connected Vehicles Digital Summit
Defense
A Guide to Electric Aircraft Systems Sizing: ePowertrain, TMS,...
Aerospace
Advancements in Pulsating Heat Pipes: Analysis and Applications...
Automotive
Optimizing Electric Powertrains: Advanced Materials for...
Automotive
Leveraging Simulation for Net Zero Emissions in Conventional and e-Fueled...
Similar Stories
BriefsPhotonics/Optics
Heterodyne RF/Optical Links Utilizing Integrated Photonics
ArticlesRF & Microwave Electronics
RF Photonics for Avionics Signal Processing
BriefsPhotonics/Optics
Analysis of Analog Photonic Links Employing Multiple-Channel (Arrayed) Receivers
BriefsPhotonics/Optics
Photonic Recirculating Delay Line for Analog-to-Digital Conversion