Oak Ridge Unveils Institute for Functional Imaging of Materials
The Department of Energy’s Oak Ridge National Laboratory (ORNL) has launched its new Institute for Functional Imaging of Materials, which aims to accelerate discovery, design, and deployment of new materials, according to a release from the laboratory. It also supports President Obama’s Materials Genome Initiative, which seeks to bring new materials to the marketplace.
In focusing expertise from ORNL’s science portfolio, capabilities in high-performance computing, and success in creating new tools for discovery, the institute seeks to speed the arrival of next-generation materials, including battery materials.
When it comes to battery materials, the challenge is looking at ions as they move and the changes in electronic structure at the same time, but the combination of leading researchers in imaging, computing, and materials science could meet this challenge, Michelle Buchannan, the Associate Laboratory Director for Physical Sciences, said in the release.
The national lab, located in Tennessee, houses several major user facilities of the Department of Energy Office of Science. ORNL is also home to one of the DOE’s largest theory groups. Researchers in materials science, chemistry, physics, and computational science work to find the missing links needed to compile a full understanding of materials.
The institute will integrate computing and experimentation in real time, which will allow researchers to capture and analyze immense data streams. By enabling tailoring of materials, this new knowledge will improve the efficiency of converting solar energy to electricity (in solar cells), transporting energy to the grid (superconducting cables), converting chemical to electrical energy (batteries), and other tasks.
"Our imaging research has helped build a comprehensive picture of operational mechanisms and failure and degradation in batteries. Now, this institute aims to bridge the imaging data with mesoscopic and atomistic predictive theories through the use of large-scale data analytics and image analysis, known as 'deep data,'" Sergei Kalinin, the institute's director said in a release.
The materials by design approach is expected to aid in extending both the lifetime and energy density of batteries.
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



