Smart Skin Simplifies Spotting Strain in Aircraft
Thanks to one peculiar characteristic of carbon nanotubes, engineers will be able to measure the accumulated strain in an airplane over the entire surface or down to microscopic levels. They’ll do so by shining a light onto structures coated with a two-layer nanotube film and protective polymer.
Strain in the surface will show up as changes in the wavelengths of near-infrared light emitted from the film and captured by a miniaturized hand-held reader. The results will show engineers and maintenance crews whether structures like aircraft have been deformed by stress-inducing events or regular wear and tear.
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



