Wireless Tamper Detection Sensor and Sensing System
The sensors can detect and locate cracks, material strain, or impact damage.
NASA's Langley Research Center researchers have developed a wireless, connection-free inductor capacitor sensor system that can be placed on or embedded in materials and structures to monitor for and detect damage. The sensors can also be used to detect package tampering and pilfering. This innovation — SansEC (Sans Electrical Connections) — makes sensors more damage-resilient and more environmentally friendly to manufacture and use.
The sensors use a NASA award-winning magnetic field response measurement acquisition device to provide power to the sensors, and to acquire physical property measurements from them. The sensors can be continuously or occasionally monitored to detect cracks, material strain, or impact damage. Damage location can also be readily identified with this system.
The SansEC sensor system consists of multiple pairs of inductor-capacitor sensors, with no electrical connections, that are placed throughout the material being monitored for damage. The sensors are embedded in or placed directly onto the surface of the material. Strains and breaks are detected by changes in resonant frequency read by the accompanying magnetic field data acquisition system. When pulsed by a sequence of magnetic field harmonics from the acquisition system, the sensors become electrically active and emit a wireless response. The magnetic field response attributes of frequency, amplitude, and bandwidth of the inductor correspond to the physical property states measured by the sensor. The received response is correlated to calibration data to determine the physical property measurement. Each sensor pair has its own frequency response, and when damage occurs to that circuit, the frequency response changes. This change identifies the damage location within the material.
A unique feature achieved by eliminating electrical connections is that damage to a single point will not prevent the sensor from being powered or interrogated. If a sensor is broken, two concentric inductively coupled sensors are created, thus identifying tamper or damage location.
Possible applications include package tamper/pilfering detection, puncture detection in hazmat suits or other protective clothing, finding cracks or anomalies in composite vehicle structures, and damage detection of multilayer materials.
NASA is actively seeking licensees to commercialize this technology. Please contact The Technology Gateway at
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



