Exo-Brake Enables Safe Return for Small Spacecraft
The tension-based, flexible braking device resembles a cross parachute.
NASA's Exo-Brake is a critical technology that can potentially help science payloads return to Earth from the International Space Station through the deployment of small spacecraft. The Exo-Brake is a tension-based, flexible braking device resembling a cross-parachute that deploys from the rear of a satellite to increase the drag. It is a deorbit device that replaces the more complicated rocket-based systems that would normally be employed during the deorbit phase of re-entry.
The Exo-Brake is made of Mylar, and is almost 4 square feet in cross section (0.35 square meters). “The Exo-Brake's current design uses a hybrid system of mechanical struts and flexible cord with a control system that ‘warps’ the device — much like how the Wright brothers used warping to control the flight behavior of their first wing design,” said Marcus Murbach, principal investigator and inventor of the Exo-Brake. This warping, combined with real-time simulations of the orbital trajectory, allows engineers to guide the spacecraft to a desired entry point without the use of fuel, enabling accurate landing for future payload return missions.
Engineers at NASA's Ames Research Center in Moffett Field, CA, have been testing the Exo-Brake. The technology demonstration mission is a part of the Technology Education (TechEdSat-5) nanosatellite that was launched Dec. 9 on Japan's H-II Transfer Vehicle from Tanegashima Space Center in Japan. The Exo-Brake will reside on the space station until its deployment in early 2017.
Since 2012, the Exo-Brake has been tested on balloons and sub-orbital rockets through the Sub-Orbital Aero-dynamic Re-entry Experiments, or SOAREX, flight series. Earlier versions of the Exo-Brake and other critical systems also have been tested on orbital experiments on TechEdSat nano-satellite missions. In addition to the goal of returning samples from the space station, the project seeks to develop building blocks for larger scale systems that might enable future small or nanosatellite missions to reach the surface of Mars and other planetary bodies in the solar system.
The Exo-Brake is funded by the Entry Systems Modeling project within the Space Technology Mission Directorate's Game Changing Development program. Additional funding for the Exo-Brake is provided by NASA Ames Research Center and the NASA Engineering and Safety Center.
For more information on the Game Changing Development program, visit Here .
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



