Timing Design & Verification Tool Suite
Symtavision (Braunschweig, Germany) has launched SymTA/S 2.4, a major new version of its tools suite for system-level timing design and timing verification. SymTA/S2.4 incorporates a wealth of new and improved features targeted at the automotive electronics, aerospace, automation and transportation markets including enhanced support for multi-core processors and AUTOSAR.
New features in SymTA/S 2.4 include support for importing and optimizing AUTOSAR electronic control unit (ECU) and network configurations, multi-core ECU performance analysis and partitioning, end-to-end worst-case and statistical timing analysis, multi-dimensional timing dependency and data consistency analysis, enhanced PYTHON scripting and remote control tool automation.
SymTA/S 2.4 significantly improves automotive process integration with the inclusion of a new AUTOSAR XML import interface enabling AUTOSAR ECU and network configuration import and optimization. With SymTA/S 2.4 engineers can easily extract the architecture and related parameterization relevant for system-level timing analysis. It also facilitates tighter coupling with third-party AUTOSAR architecture design and ECU configuration tools equipped with XML export support.
For Free Info Click Here
Top Stories
INSIDERRF & Microwave Electronics
FAA to Replace Aging Network of Ground-Based Radars
PodcastsDefense
A New Additive Manufacturing Accelerator for the U.S. Navy in Guam
NewsSoftware
Rewriting the Engineer’s Playbook: What OEMs Must Do to Spin the AI Flywheel
Road ReadyPower
2026 Toyota RAV4 Review: All Hybrid, All the Time
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
Webcasts
Energy
Hydrogen Engines Are Heating Up for Heavy Duty
Energy
SAE Automotive Podcast: Solid-State Batteries
Power
SAE Automotive Engineering Podcast: Additive Manufacturing
Aerospace
A New Approach to Manufacturing Machine Connectivity for the Air Force
Software
Optimizing Production Processes with the Virtual Twin



