Self-Assembling Molecules Could Replace Circuit-Writing Process
Inkjet printing has revolutionized the photo business, to where it is now commonplace to produce clear, glossy photos with a home printer. Now, a simple inkjet technique developed by NanoSonic of Blacksburg, VA, may offer hope to electronics makers seeking faster, simpler, more environmentally friendly methods for producing circuitry. 
The secret to NanoSonic’s approach is in its electrostatic self-assembly (ESA) technique, which has been funded through Missile Defense Agency (MDA) Phase I and Phase II Small Business Innovation Research (SBIR) grants to develop missile electronics and nonlinear optical thin films for optical communications.
How it Works
ESA can be used to precisely build stacks of highly uniform, nanometer-thick layers, like bone builds itself upon its scaffold. A new technique could allow manufacturers to use desktop printing technology to produce conductive traces for electronics, such as computer circuitry. NanoSonic has produced a library of more than 2,000 materials including polymers, metal and oxide nanoclusters, and complex molecules such as “buckyballs.” Proteins and other biological molecules can also be constructed using ESA.
NanoSonic can precisely control the placement of the building blocks of these materials, as well as the order of the molecular layers, allowing control over electrical, optical, magnetic, thermal, mechanical, and other properties important to many engineering devices and applications. In experiments for its circuit board applications, NanoSonic first used a complicated laboratory printer, but has since graduated to a modified inexpensive desktop printer.
MDA’s interest in ESA techniques for circuitry applications dates back to the late 1990s. It then awarded a Phase II SBIR to further develop NanoSonic’s self-assembling materials for manufacturing next-generation radio frequency (RF) and microwave device components onto flexible substrates using low-cost inkjet print self-assembly methods. Through that continuing Phase II MDA project, NanoSonic developed the capability to inkjet print metal nanocluster solutions onto substrates to form patterned, electrically conductive lines at room temperature.
Effectively, that means that you can use a desktop printer with cartridges containing special ink to print the conductive traces for electronic circuits or advanced electronic devices. Inkjet deposition of metals at room temperature was an important step. Room-temperature printing enables printing on plastics that would otherwise melt at high temperature, compared with traditional methods of deposition that may require heating the ink.
With other government grants, NanoSonic parlayed the ESA technique into a material called MetalRubber™, a substance that can conduct electricity as well as copper wire can, but with a fraction of the metal content. It can be stretched to 1,000 percent of its size and snap back to its original shape with no loss of properties, heated to over 700 °F, and endure acetone or jet fuel baths with impunity. MetalRubber has multiple abilities all in one material: conductivity, elastic modulus, thermal properties, and response to specific electromagnetic signals.
Where it Stands
While NanoSonic’s materials are still in development, ESA technology has ignited the imagination — foldable TV monitors, morphing aircraft wings, and all manner of electronic origami are being considered as possible products. The company sells MetalRubber sensors, and 6"- and 12"-square sheets of the material. In addition, NanoSonic continues to work closely with multiple partners to develop applications for the technology.
More Information
For more information on NanoSonic’s self-assembling materials, visit http://info.hotims.com/28052-516 . (Source: Joan Zimmermann/NTTC; MDA TechUpdate, Missile Defense Agency, National Technology Transfer Center Washington Operations)
Top Stories
INSIDERLighting Technology
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERDefense
F-22 Pilot Controls Drone With Tablet
Technology ReportAR/AI
Talking SDVs and Zonal Architecture with TE Connectivity
INSIDERManufacturing & Prototyping
New Defense Department Program Seeks 300,000 Drones From Industry by 2027
INSIDERAerospace
Anduril Completes First Semi-Autonomous Flight of CCA Prototype
Webcasts
Test & Measurement
SAE Automotive Engineering Podcast: Additive Manufacturing
Information Technology
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Manufacturing & Prototyping
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Automotive
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



