Using Nano-Engineering Techniques to Develop a Safer Battery
The technology replaces the volatile and highly flammable organic solvents found in Li-ion batteries with saltwater.
A research team at the University of Central Florida has developed technology that could prevent electric vehicle fires, like those caused by saltwater flooding from Hurricane Ian.
The technology, an aqueous battery, replaces the volatile and highly flammable organic solvents found in electric vehicle Li-ion batteries with saltwater to create a battery that is safer, faster charging, just as powerful and won’t short circuit during flooding. The work is detailed in a new study in Nature Communications.
“During Hurricane Ian, a lot of electric cars caught fire after they were soaked in floodwater,” said Yang Yang, an Associate Professor in UCF’s NanoScience Technology Center who led the research. “That is because the saltwater corrodes the battery and causes a short circuit, which ignites the flammable solvents and other components. Our battery uses saltwater as an electrolyte, eliminating the highly volatile solvents.”
Also key to the battery’s design is its novel, nano-engineering that allows the battery to overcome limitations of previous aqueous batteries, such as slow charging times and poor stability.
Yang is an expert in developing materials for renewable energy devices such as batteries with improved safety. The UCF-designed battery is fast charging, reaching full charge in three minutes, compared to the hours it takes Li-ion batteries.
Previous aqueous battery designs have suffered from low energy output, instability, the growth of harmful metallic structures called dendrites on the negative electrode and corrosion.
By using saltwater as the battery’s liquid electrolyte, the UCF researchers were able to use naturally occurring metal ions found in the saltwater, such as sodium, potassium, calcium, and magnesium, to create a dual-cation battery that stores more energy. This implementation allowed them to overcome the sluggishness of previous single-cation aqueous battery designs.
To solve problems with instability, dendrite growth and corrosion, the researchers engineered a forest-like 3D zinc-copper anode containing a thin zinc-oxide protective layer on top.
The novel, nano-engineered surface, which looks like a birds-eye-view of a forest, allows the researchers to precisely control electrochemical reactions, thereby increasing the battery’s stability and quick charging ability. Furthermore, the zinc-oxide layer prevented dendritic growth of zinc, which was confirmed using optical microscopy.
“These batteries using the novel materials developed in my lab will remain safe even if they are used improperly or are flooded in saltwater,” Yang said. “Our work can help improve electric vehicle technology and continue to advance it as reliable and safe form of travel.”
For more information, contact Andrea Adkins at
Top Stories
INSIDERDesign
How Airbus is Using w-DED to 3D Print Larger Titanium Airplane Parts
NewsSensors/Data Acquisition
Microvision Aquires Luminar, Plans Relationship Restoration, Multi-industry Push
INSIDERManned Systems
A Next Generation Helmet System for Navy Pilots
NewsAR/AI
Accelerating Down the Road to Autonomy
INSIDERDefense
New Raytheon and Lockheed Martin Agreements Expand Missile Defense Production
ArticlesAR/AI
CES 2026: Bosch is Ready to Bring AI to Your (Likely ICE-powered) Vehicle
Webcasts
Semiconductors & ICs
Advantages of Smart Power Distribution Unit Design for Automotive...
Unmanned Systems
Quiet, Please: NVH Improvement Opportunities in the Early Design...
Electronics & Computers
Cooling a New Generation of Aerospace and Defense Embedded...
Automotive
Battery Abuse Testing: Pushing to Failure
Transportation
A FREE Two-Day Event Dedicated to Connected Mobility



