Porous and Stiff Material for Aircraft Lightweighting
Researchers have developed and manufactured a family of architectures that maximizes the stiffness of porous, lightweight materials. 3D printing and other additive production techniques make it possible to manufacture materials with internal structures of previously unimaginable complexity. Achieving this requires that the internal structures be intelligently organized for maximum efficiency.
The stiffness in the material’s interior is achieved through plate-lattices rather than trusses. These structures that are up to three times stiffer than truss-lattices of the same weight and volume.
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



