Putting Smart Weapons to The Test
In the old days, a slingshot, BB gun, rifle or cannon was only as smart as the marksman taking aim. Now, many weapons are guided to their targets with the precision of infrared sensors and lasers. The technology continues to advance, but testing technology has lagged behind, leaving new generations of weapons and their tactical advantages unavailable to today's troops.
Closing the gap between infrared sensor technology and testing technology was the challenge accepted by Chip Design Systems (CDS), a business founded by University of Delaware Prof. Fouad Kiamilev (electrical and computer engineering), who had some smart weapons of his own: a lab packed with sharp, young researchers and a team of expert collaborators. Kiamilev, CDS Research Engineer Rodney McGee and collaborators from the University of Iowa, Firefly Photonics, ON Semiconductor and Teledyne Scientific now have patented technology for a new testing device that matches the advanced capability of infrared sensors.
Infrared sensors are used to detect objects that emit heat or reflect infrared light, which is not visible to the naked eye. These sensors capture data and provide essential information even in dark or foggy conditions and can detect humans and other objects behind doors or walls. A new generation of sensors can detect smaller, faster targets, even in complex backgrounds.
Working with the Air Force Research Laboratory, CDS has designed a new shortwave infrared LED (light-emitting diode) projector to test those new sensors. The projector produces infrared scenes with unprecedented resolution, double the speed and much higher brightness than existing technology. Its circuits allow each pixel to be programmed.
A prototype with the new technology - called the Night Glow Short Wave Infrared LED Image Projector (or NSLEDS, for short) - has been used for hundreds of hours already in evaluation at Eglin Air Force Base in Florida. It has proven the work is going in the right direction.
About 30 people were involved in development of the successful prototype, and CDS now has a contract to develop that 4-megapixel infrared projector. The project has received more than $2.5 million in support from the U.S. Air Force Small Business Innovation Research/Small Business Technology Transfer Program (SBIR/STTR). The infusion of government support allows for development of new technology, a costly enterprise that otherwise would be far beyond the reach of a small-but-innovative company such as CDS, Kiamilev said.
The new projector could save the military millions of dollars in materials and hours.
Top Stories
INSIDERElectronics & Computers
Army Launches CMOSS Prototyping Competition for Computer Chassis and Cards
INSIDERSoftware
The Future of Aerospace: Embracing Digital Transformation and Emerging...
ArticlesAerospace
Making a Material Difference in Aerospace & Defense Electronics
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
ArticlesAerospace
Microchip’s New Microprocessor to Enable Generational Leap in Spaceflight...
EditorialConnectivity
Webcasts
Power
Phase Change Materials in Electric Vehicles: Trends and a Roadmap...
Automotive
Navigating Security in Automotive SoCs: How to Build Resilient...
Automotive
Is Hydrogen Propulsion Production-Ready?
Unmanned Systems
Countering the Evolving Challenge of Integrating UAS Into Civilian Airspace
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management and XiL Testing
Defense
Best Practices for Developing Safe and Secure Modular Software