Detecting Maritime Radiological/Nuclear Threats with Hybrid Imaging
A stand-off detection system for maritime environments enables remote detection of nuclear materials.
The SuperMISTI detection system is a hybrid detection, identification, and imaging system for sources of gamma-ray radiation at stand-off distances. The system is based on the Mobile Imaging and Spectroscopic Threat Identification (MISTI) system designed for the Department of Homeland Security. The SuperMISTI system uses the high-resolution spectra of high-purity germanium (HPGe) detectors to detect and identify gamma-ray sources as well as coded aperture technology, and lower-cost NaI detectors to image and localize the detected sources. The system utilizes a modular design to allow the detection/identification and the imaging/ localization portions to be used separately or together, depending on the situation.

The SuperMISTI detection/identification subsystem utilizes a pallet-mounted array of 24 HPGe detectors individually shielded from above, below, and the sides by 0.5" lead plates. Each dewar has a cryogenic solenoid valve and a temperature sensor on the exhaust to monitor when the dewar is full. The valves and sensors are plate-mounted atop the palletized array. Separate sensors monitor the pressure on the input lines. The SuperMISTI imaging/localization subsystem consists of 78 NaI detectors mounted into an array on one side of the ISO container. The entire array is shielded from above, below, and the sides by 1" of lead; in addition, a 1" lead flooring provides further shielding from background radiation originating from below, and an additional layer of 1" lead on the back wall provides shielding from the rear.
When operated as a single detection system, the two subsystems are deployed together and connected via Ethernet. The system is started via a simple run GUI (graphical user interface) that records a unique run number, start and stop times, and a user-input run description. Real-time system monitoring is accomplished via a Web GUI that displays an overhead map/satellite image of the area with the truck location and, if applicable, detected source location overlaid.

In a demonstration, both Super-MISTI subsystems were deployed on a 60-foot barge that was pushed by a tug at speeds of up to 6 kn and at stand-off distances of up to 300 m. The results of this exercise were very close to the expected performance and clearly demonstrate the utility of the SuperMISTI system. All sources that were deployed in the demonstration were successfully detected, identified, and localized at operationally relevant distances ranging up to hundreds of meters.
Since the completion of the demonstration, the number of HPGe detectors in the detection/identification subsystem has been increased from 24 to 48, a modification that significantly enhances the gamma detection/identification capabilities of the system. Further performance enhancements planned for the future include the use of a large-area BF3 detector array to increase neutron detection capabilities and the implementation of better localization algorithms for neutron sources.
This work was done by Anthony L. Hutcheson, Bernard F. Phlips, Eric A. Wulf, Lee J. Mitchell, and W. Neil Johnson of the Naval Research Laboratory; and Byron E. Leas of SRA International. NRL-0062
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



