Quantum Radar Detects “Invisible” Objects
A prototype quantum radar has the potential to detect objects that are invisible to conventional systems. The new breed of radar is a hybrid system that uses quantum correlation between microwave and optical beams to detect objects of low reflectivity, such as cancer cells or aircraft, with a stealth capability. Because the quantum radar operates at much lower energies than conventional systems, it has the long-term potential for a range of applications in biomedicine including non-invasive NMR scans.
A conventional radar antenna emits a microwave to scan a region of space. Any target object would reflect the signal to the source, but objects of low reflectivity immersed in regions with high background noise are difficult to spot using classical radar systems. In contrast, quantum radars operate more effectively and exploit quantum entanglement to enhance their sensitivity to detect small signal reflections from very noisy regions.
The radar could be operated at short distances to detect the presence of defects in biological samples or human tissues in a completely non-invasive fashion, thanks to the use of a low number of quantum-correlated photons.
Source :
Top Stories
INSIDERManufacturing & Prototyping
How Airbus is Using w-DED to 3D Print Larger Titanium Airplane Parts
INSIDERManned Systems
FAA to Replace Aging Network of Ground-Based Radars
NewsTransportation
CES 2026: Bosch is Ready to Bring AI to Your (Likely ICE-powered) Vehicle
NewsSoftware
Accelerating Down the Road to Autonomy
EditorialDesign
DarkSky One Wants to Make the World a Darker Place
INSIDERMaterials
Can This Self-Healing Composite Make Airplane and Spacecraft Components Last...
Webcasts
Defense
How Sift's Unified Observability Platform Accelerates Drone Innovation
Automotive
E/E Architecture Redefined: Building Smarter, Safer, and Scalable...
Power
Hydrogen Engines Are Heating Up for Heavy Duty
Electronics & Computers
Advantages of Smart Power Distribution Unit Design for Automotive...
Unmanned Systems
Quiet, Please: NVH Improvement Opportunities in the Early Design...



