Humanlike Articulated Robotic Headform for Respirator Fit Testing
These prototypes can replace humans in testing of respiratory protection devices.
The testing of individual respiratory protection (IRP) devices is now accomplished with panels of human wearers. Historical at tempts to simulate the human face and head have been unsuccessful for a variety of reasons that include imprecision in reproduction of facial dimensions and unrepresentative textures of the surfaces applied to headforms.

The static headform was built first as a prototype to work out many of the details of material composition and configuration. Skin thickness was specified to reproduce a set of ultrasound measurements reported for a panel of young adult male Caucasians. This was accomplished by an inverse forensic reconstruction technique in which a mold of the NIOSH medium headform was cast and clay was applied to the (negative) surface of the mold in a layer whose local thicknesses matched the measured skin thickness. Pins inserted into the negative surface guided the clay thickness. The skull form was then cast to the clay negative surface, and used subsequently as a complementary mold surface to cast the polydimethylsiloxane (PDMS) skin (Frubber™) with anatomically accurate thickness (see Figure 1). For this, the molds were oriented with locating pins, and for assembly, the skull form and skin included locating dimples in areas noncritical to respirator fitting.
A simplified fit test under static conditions at NIOSH showed this head to achieve fit factors (FFs) slightly better than average values measured for the complete protocol, which includes movement. The result was considered completely successful for the first stage, and a process of design refinement and construction of an articulated, robotic headform in the same dimensions was undertaken.
Feedback that the skin thickness near the top of the head was a bit too thin led to a jig that has since been used to verify dimensions during assembly. The temples and back of the head also were too small (see Figure 2), which resulted from deformation of the surface during the assembly process. Jigs were devised to control the surface form during assembly, and to verify dimensions prior to shipment.

The stiffest challenge was achieving an airtight seal around the electronic and mechanical components enclosed in the skull form from aerosolized water and salts in both the external environment and the breathing tube, through which the same aerosol was drawn through a test respirator and eventually delivered to sampling equipment. After several false starts, this was accomplished by inverting the physiology of the oral cavity in an elastomeric casting that was sealed with an adhesive to the lips of the Frubber™ skin, and that engaged the breathing tube on its upper face.
Initial fit testing results suggest that the static headform accurately reproduces the dimensions and textures of the NIOSH medium head. The first application targeted is upgrading N95 respirator certification under 42 CFR 84 to a basis of protection factor (PF) rather than particle exclusion by the medium; however, markets to support respirator design, leak testing, use of hazardous challenges, and PF measurements during extreme exercise/stress are anticipated.
This work was done by Joseph Wander of the Air Force Research Laboratory, and David Hanson and Richard Margolin of Hanson Robotics. AFRL-0224
Top Stories
INSIDERDefense
F-35 Proves Nuke Drop Performance in Stockpile Flight Testing
INSIDERMaterials
Using Ultrabright X-Rays to Test Materials for Ultrafast Aircraft
INSIDERManufacturing & Prototyping
Stevens Researchers Test Morkovin's Hypothesis for Major Hypersonic Flight...
INSIDERManufacturing & Prototyping
New 3D-Printable Nanocomposite Prevents Overheating in Military Electronics
INSIDERRF & Microwave Electronics
L3Harris Starts Low Rate Production Of New F-16 Viper Shield
INSIDERRF & Microwave Electronics
Webcasts
Energy
SAE Automotive Engineering Podcast: Additive Manufacturing
Manufacturing & Prototyping
A New Approach to Manufacturing Machine Connectivity for the Air Force
Automotive
Optimizing Production Processes with the Virtual Twin
Power
EV and Battery Thermal Management Strategies
Energy
How Packet Digital Is Scaling Domestic Drone Battery Manufacturing
Materials
Advancements in Zinc Die Casting Technology & Alloys for Next-Generation...



