Cepton Technology’s Newest Highspeed Lidar Sensor Can Spot a Tow Hitch on a Vehicle Traveling 50 Miles per Hour
The SORA P60 lidar sensor pairs with SORA-Edge computing hardware to send vehicle and environment data over Ethernet, Wi-Fi or 4G LTE to a central processing server.

Cepton Technologies, Inc. , a San Jose, California-based 3D lidar developer, has added a line scanning lidar (light detection and ranging) sensors to its SORA line-up for autonomous vehicles. The SORA-P60 uses Cepton’s Micro-Motion Technology (MMT) to achieve an industry leading 1,200 scan lines per second, to provide accurate 3D scans and to enable automated classification of objects and volumetric scanning. The sensor is currently installed at an undisclosed highway tolling facility in the United States.


When combined with Cepton’s edge-computing hardware, SORA-Edge, the new SORA-P60 lidar sensor becomes a powerful, mobile object classification and volumetric measurement device which can send vehicle and environment data over Ethernet, Wi-Fi or 4G LTE to a central processing server. This technology opens up the possibility of scanning fast moving objects, both for automotive and aerospace applications.
Active electro-optical sensors, or lidar technology, is a fast-moving business area for self-driving car and unmanned aerial vehicle (UAV) markets, enabling adaptive drive assistance systems (ADAS) for automatic driving and vehicle protection systems.
There are still many unsettled areas regarding sensor design and automated driving. One major concern is the standardization of tests and procedures for verifying, simulating, and calibrating these automated driving sensors. This topic and more are covered in detail in SAE International’s SAE EDGE™ Research Report: Unsettled Topics Concerning Sensors for Automated Road Vehicles.
William Kucinski is content editor at SAE International, Aerospace Products Group in Warrendale, Pa. Previously, he worked as a writer at the NASA Safety Center in Cleveland, Ohio and was responsible for writing the agency’s System Failure Case Studies. His interests include literally anything that has to do with space, past and present military aircraft, and propulsion technology.
Contact him regarding any article or collaboration ideas by e-mail at This email address is being protected from spambots. You need JavaScript enabled to view it..
Top Stories
INSIDERAerospace
Air Force Completes First Magnetic Navigation Flight on C-17 - Mobility...
INSIDERMaterials
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERResearch Lab
Air Force Performs First Test of Microwave Counter Drone Weapon THOR - Mobility...
INSIDERElectronics & Computers
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERDefense
Navy Selects Lockheed Martin and Raytheon to Develop Hypersonic Missile -...
INSIDERSoftware
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
Webcasts
Automotive
How Metal Additive Manufacturing Is Driving the Future of Tooling
Software
Microelectronics Design Security: Better with Formal Methods
Defense
Solving Complex Thermal Challenges of Today’s Space Market
Manufacturing & Prototyping
Traction-Motor Innovations for Passenger and Commercial Electric...
Medical
5 Ways to Test Wearable Devices
Software
Mastering the Challenges of the Software Defined Vehicle: Digital...