
Composite Material Increases Electrical Current Capacity of Copper Wires
The material can be scaled for use in ultra-efficient, power-dense, electric vehicle traction motors.
Researchers have created a composite material that increases the electrical current capacity of copper wires. The research is aimed at reducing barriers to wider electric vehicle adoption including cutting the cost of ownership and improving the performance and life of components such as electric motors and power electronics. The material can be deployed in any component that uses copper including more efficient bus bars and smaller connectors for electric vehicle traction inverters, as well as for applications such as wireless and wired charging systems.
To produce a lighter-weight conductive material with improved performance, the researchers deposited and aligned carbon nanotubes on flat copper substrates, resulting in a metal-matrix composite material with better current handling capacity and mechanical properties than copper alone.
Incorporating carbon nanotubes (CNTs) into a copper matrix to improve conductivity and mechanical performance is not a new idea. CNTs are an excellent choice due to their lighter weight, high strength, and conductive properties. But past attempts at composites have resulted in very short material lengths — only micrometers or millimeters — along with limited scalability or in longer lengths that performed poorly.
The researchers deposited single-wall CNTs using electrospinning, a commercially viable method that creates fibers as a jet of liquid speeds through an electric field. The technique provides control over the structure and orientation of deposited materials. In this case, the process allowed scientists to successfully orient the CNTs in one general direction to facilitate enhanced flow of electricity.
The team then used magnetron sputtering, a vacuum coating technique, to add thin layers of copper film on top of the CNT-coated copper tapes. The coated samples were then annealed in a vacuum furnace to produce a highly conductive Cu-CNT network by forming a dense, uniform copper layer and to allow diffusion of copper into the CNT matrix. Using this method, the scientists created a copper-carbon nanotube composite 10 centimeters long and 4 centimeters wide with exceptional properties. The composite reached 14% greater current capacity, with up to 20% improved mechanical properties compared with pure copper.
While the composite has direct implications for electric motors, it also could improve electrification in applications where efficiency, mass, and size are a key metric. The improved performance characteristics, accomplished with commercially viable techniques, means new possibilities for designing advanced conductors for a broad range of electrical systems and industrial applications.
The team also is exploring the use of double-wall CNTs and other deposition techniques, such as ultrasonic spray coating coupled with a roll-to-roll system, to produce samples of 1 meter in length.
For more information, contact Stephanie G. Seay at This email address is being protected from spambots. You need JavaScript enabled to view it.; 865-576-9894.
Top Stories
INSIDERData Acquisition
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERCommunications
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERSensors/Data Acquisition
Airbus Starts Testing Autonomous Landing, Taxi Assistance on A350 DragonFly...
INSIDERManned Systems
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
INSIDERWeapons Systems
PAC-3 Missile Successfully Intercepts Cruise Missile Target - Mobility...
INSIDERUnmanned Systems
Air Force Pioneers the Future of Synthetic Jet Fuel - Mobility Engineering...
Webcasts
Software
Leveraging Machine Learning in CAE to Reduce Prototype Simulation and Testing
Sensors/Data Acquisition
Driver-Monitoring: A New Era for Advancements in Sensor Technology
Electronics & Computers
Tailoring Additive Manufacturing to Your Needs: Strategies for...
Automotive
How to Achieve Seamless Deployment of Level 3 Virtual ECUs for...
Photonics/Optics
Specifying Laser Modules for Optimized System Performance
Medical
Trending Stories
NewsPower
Volvo CE Previews ConExpo 2023 Display
ArticlesManufacturing & Prototyping
Low Distortion Titanium in Laser Powder Bed Fusion Systems