Outdoor Synthetic Aperture Acoustic Ground Target Measurements
Sound wave reflections distinguish between various substances.
A novel outdoor synthetic aperture acoustic (SAA) system consists of a microphone and loudspeaker traveling along a 6.3-meter rail system. This is an extension of a prior indoor laboratory measurement system in which selected targets were insonified while suspended in air. Here, the loudspeaker and microphone are aimed perpendicular to their direction of travel along the rail. The area next to the rail is insonified and the microphone records the reflected acoustic signal, while the travel of the transceiver along the rail creates a synthetic aperture allowing imaging of the scene.
The system supports a desired standoff detection capability by looking perpendicular to the direction of travel. The sensor’s field of view is different from forward-looking radar or other opto-acoustic systems, but addresses the lateral view of the standoff detection objective. Opto-acoustic and other excitation systems have been used successfully to detect buried landmines.
An acoustic transceiver (quasi-monostatic) was constructed and mounted on a 6.3-meter portable rail system to facilitate controlled outdoor measurements (ultimately, the objective is a teleoperated vehicular mounted version). The direct measurement of the transceiver is the acoustic reflectivity found in the synthetic aperture or “acoustic scene.” The acoustic absorption of some materials is frequency-dependent, and the frequency spectrum of the backscatter is also strongly influenced by the target geometry when the target dimensions are comparable to or greater than the acoustic wavelength. A number of targets were imaged, and variations in acoustic reflectivity and phase versus aspect angle were observed.
By moving along the rail, the transceiver can continuously collect data, allowing the generation of synthetic aperture. Several canonical targets were placed on a weathered asphalt surface and image formation, i.e., wavefront reconstruction, was performed. This allows for the image processing techniques to include target and ground surface scattering analyses. Additionally, a digital spotlighting technique was performed on selected targets to produce aspect angle versus frequency plots. This allows for subsequent spatial and spectral analyses to be performed.
Digitally spotlighted and broadside position preliminary assessment of the selected targets indicate different relative magnitudes and frequency responses. As expected, the spherical targets have lower acoustic cross-section magnitudes, and the blocks’ flat surface perpendicular to transceiver travel have significantly larger scattering magnitudes. For example, a manufactured concrete block shows lower broadside-acoustic magnitude compared to three grout-covered foam blocks.
This work was done by Steven Bishop, Jay Marble, and Pete Gugino of the Army RDECOM CERDEC NVESD; Therese-Ann Ngaya, Joseph Vignola, and John Judge of the Catholic University of America; and Erik Rosen and Mehrdad Soumekh. For more information, download the Technical Support Package (free white paper) at www.defensetechbriefs.com/tsp under the Physical Sciences category. ARL-0105
This Brief includes a Technical Support Package (TSP).

Outdoor Synthetic Aperture Acoustic Ground Target Measurements
(reference ARL-0105) is currently available for download from the TSP library.
Don't have an account? Sign up here.
Top Stories
INSIDERAerospace
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERData Acquisition
Air Force Completes First Magnetic Navigation Flight on C-17 - Mobility...
INSIDERWeapons Systems
Air Force Performs First Test of Microwave Counter Drone Weapon THOR - Mobility...
INSIDERSoftware
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERDesign
Navy Selects Lockheed Martin and Raytheon to Develop Hypersonic Missile -...
INSIDERAerospace
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
Webcasts
Software
Accelerate Software Innovation Through Target-Optimized Code...
Manufacturing & Prototyping
How Metal Additive Manufacturing Is Driving the Future of Tooling
Electronics & Computers
Microelectronics Data Security: Better with Formal Methods
Aerospace
Solving Complex Thermal Challenges of Today’s Space Market
Automotive
Traction-Motor Innovations for Passenger and Commercial Electric...
Medical
Trending Stories
INSIDERResearch Lab
Air Force Performs First Test of Microwave Counter Drone Weapon THOR
ArticlesAerospace
Single Event Effects in High Altitude Aerospace Sensor Applications