Liquid-Crystal-Particle Thermometry and Velocimetry System
Temperature and flow fields are mapped with the help of TLC particles.
A three-dimensional (3D) defocusing liquid-crystal-particle thermometry and velocimetry (3DDLCPTV) system has been designed and constructed (but not yet operated) for use in measuring the 3D velocity and temperature fields, respectively, in a volume of interest in a possibly turbulent flow. As its name suggests, the system utilizes defocusing digital particle-image velocimetry (DDPIV) for obtaining velocity data and liquid-crystal thermometry for obtaining temperature data.
The system includes a total of three monochrome charge-coupled- device (CCD) electronic cameras and one color CCD camera, all aimed at the flow volume of interest (see figure). During operation of the system, the flow would be seeded with thermotropic liquid crystal (TLC) particles, which reflect light predominantly at a wavelength that varies with temperature. The flow would be illuminated by use of a high-intensity xenon flashlamp, and the cameras would acquire sequences of images of the illuminated TLC particles.
The geometric arrangement of the cameras is such that in superposing the four camera images as part of the processing of image data, one would obtain, for each illuminated particle, a composite image that could be readily and uniquely identified as a combination of four blurred spots located at the vertices and center of an equilateral triangle. The 3D velocity of each particle could then be calculated by correlation analysis of the blurred spots at the vertices of the triangle in two consecutive images, while the temperature of the particle would be calculated through analysis of the hue of the central spot. Thus, the system should be capable of resolving the temperatures and velocities of all particles within the volume of interest.
This work was done by David Robert Schmitt of the University of Washington for the Air Force Research Laboratory.
This Brief includes a Technical Support Package (TSP).

Liquid-Crystal-Particle Thermometry and Velocimetry System
(reference AFRL-0038) is currently available for download from the TSP library.
Don't have an account? Sign up here.
Top Stories
INSIDERAerospace
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERData Acquisition
Air Force Completes First Magnetic Navigation Flight on C-17 - Mobility...
INSIDERWeapons Systems
Air Force Performs First Test of Microwave Counter Drone Weapon THOR - Mobility...
INSIDERSoftware
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERDesign
Navy Selects Lockheed Martin and Raytheon to Develop Hypersonic Missile -...
INSIDERAerospace
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
Webcasts
Software
Accelerate Software Innovation Through Target-Optimized Code...
Manufacturing & Prototyping
How Metal Additive Manufacturing Is Driving the Future of Tooling
Electronics & Computers
Microelectronics Data Security: Better with Formal Methods
Aerospace
Solving Complex Thermal Challenges of Today’s Space Market
Automotive
Traction-Motor Innovations for Passenger and Commercial Electric...
Medical
Trending Stories
INSIDERResearch Lab
Air Force Performs First Test of Microwave Counter Drone Weapon THOR
ArticlesAerospace
Single Event Effects in High Altitude Aerospace Sensor Applications