Detecting Trace Levels of Explosives Using Vibrational Sum Frequency Spectroscopy
VSFS technology can also be used to check for explosive traces on packages and suitcases.
The threat of improvised explosive devices (IEDs) to human life is grave, and countering this threat is a high priority for force protection during military operations. Remote, standoff detection of in-place IEDs would be a significant step forward in mitigating the threat posed by these weapons.
Standoff detection of trace levels of explosives would be of great benefit in identifying the location of hidden explosive devices and locations where these munitions are assembled. Previous research investigated the use of the nonlinear optical technique vibrational sum frequency spectroscopy (VSFS) for standoff detection of trace levels of explosives on surfaces.
VSFS combines a visible laser beam and a tunable infrared laser beam at the interface with the energy range of the tunable IR laser overlapping with the energies of vibrational modes of molecules present at the interface. By scanning the energy of the IR laser and monitoring the generated sum frequency signal, one obtains a vibrational spectrum of the interfacial molecules.
VSFS can detect 2,4,6-trinitrophenol (picric acid), 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) at surface concentrations as low as 300 ng cm-2. Because these surface concentrations are typical of what might be found on surfaces containing adventitious contamination of explosives, these laboratory results indicate that VSFS could be used as a remote-sensing probe for detecting trace levels of explosives. However, in order for a method to be useful for operation detection of explosives, it must be demonstrated that the signal generated by explosives can be detected in the presence of environmental contamination on a variety of substrates.
The objectives of this work were to understand the nonlinear optical response of explosives on surfaces that are typically encountered in urban environments, determine if environmental contaminants produce signatures that would mimic those from explosives, and demonstrate that VSFS signals can be detected at standoff distances of up to five meters.
As a trace detection method, VSFS has the advantages of being non-contact and non-destructive with sub-second detection times. Therefore, a high explosives detection method for detecting IEDs or portal defense based on VSFS could provide standoff trace detecting for IEDs, and increase the throughput of package screening (in terms of objects scanned per minute) for portal defense. Furthermore, because VSFS does not degrade contaminants on surfaces, a positive detection result leaves any explosives detected in place for subsequent forensic analysis such as fingerprint identification. This research has shown that VSFS provides high chemical selectivity for nitro-containing HEs in the presence of environmental chemical contamination.
Experiments have demonstrated that the VSFS response of nitro-containing explosive crystals adsorbed on surfaces is largely independent of surface contamination or chemical complexity. Range-insensitive optical configurations for performing VSFS measurements are possible, and detection using the method at standoff distances of up to 2.2 meters has been demonstrated. Detection time using VSFS is rapid, and the method can detect trace levels of urea from suitcases moving on a baggage carousel (see figure). In the case of RDX, preparation of samples via recrystallization from solvents produces different crystal structures than found in operational explosive samples, and this affects VSFS signal response.
This work was done by William Asher of the University of Washington Applied Physics Laboratory for the Office of Naval Research. ONR-0033
Top Stories
INSIDERRF & Microwave Electronics
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERElectronics & Computers
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERRF & Microwave Electronics
Air Force Performs First Test of Microwave Counter Drone Weapon THOR - Mobility...
INSIDERDefense
Navy Selects Lockheed Martin and Raytheon to Develop Hypersonic Missile -...
INSIDERSoftware
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
NewsManned Systems
Tesla’s FSD Recall Impacts AV Industry - Mobility Engineering Technology
Webcasts
Software
Accelerate Software Innovation Through Target-Optimized Code...
Manufacturing & Prototyping
How Metal Additive Manufacturing Is Driving the Future of Tooling
Electronics & Computers
Microelectronics Data Security: Better with Formal Methods
Aerospace
Solving Complex Thermal Challenges of Today’s Space Market
Automotive
Traction-Motor Innovations for Passenger and Commercial Electric...
Medical
Trending Stories
INSIDERResearch Lab
Air Force Performs First Test of Microwave Counter Drone Weapon THOR
ArticlesAerospace
Single Event Effects in High Altitude Aerospace Sensor Applications