Characterizing Mechanical Properties at the Microscale

Scientists employ focused ion beam milling to prepare micron-size single-crystal test specimens and use a nanoindenter device to record stress-strain curves.

Scientists from AFRL, Pratt & Whitney Aircraft, and General Electric Aircraft Engines, working under the Defense Advanced Research Projects Agency's Accelerated Insertion of Materials (AIM) program, have invented a new method for characterizing the single-crystal properties of aerospace alloys using micron-size test samples. The research team based the new characterization method on focused ion beam (FIB) microscopy and a commercially available nanoindentation-based test instrument. Further development of these methodologies, in conjunction with their continued integration with simulation methods devised under the AIM program, will enable engineers to consider local changes in material microstructure and their effect on properties in the design process. The integration of advanced mechanical property measurements, materials representation, and simulation methods will dramatically decrease the time required for new materials insertion and will transform microstructure into a design variable for engineered systems. These advancements will directly benefit combat systems and readiness.

A deformed single crystal of pure nickel after measurement of critical resolved shear stress under single-slip conditions

A primary challenge to the rapid insertion of new materials into the design cycle is the need to understand both the intrinsic properties of an engineering material at the microscopic level and the influence of defects on these properties at the macroscopic level. Historically, scientists have been unable to develop model parameters or validate continuum materials behavior models that are based upon discrete microstructural information. Continuum crystal plasticity models are at the frontier of techniques that incorporate direct microstructural information. However, a major deficiency of these models is the need to obtain required input information: the single-crystal mechanical properties of individual grains, or microconstituents. Acquiring this information is particularly difficult when such parameters must reflect the subtleties of material process history or the local influence of material defects.

Under the AIM program, AFRL researchers have sought to measure the single-crystal mechanical properties, such as the critical resolved shear stresses and strain hardening rates, of micro- and nanoscale samples extracted from relevantly processed structural alloys (see figure). Scientists are currently developing direct methods to automatically and rapidly characterize both the mechanical response of relevant microstructural elements and the stochastic nature of material property variation to establish the mechanical properties of a material's representative volume elements (RVE).

It is essential for scientists building continuum models to quickly determine the mechanical properties of RVEs in order to quantify the inherent variability in material properties, the observed variability in experimental measurements, and the uncertainty in predicted properties. They can then establish "confidence metrics" for the data they incorporate into the designer's knowledge base. Without such confidence, scientists can add new materials (or old materials in new applications) to the knowledge base only after extremely difficult and costly testing.

The new characterization method uses FIB milling to isolate and prepare single-crystal mechanical test specimens from individual grains, or precipitates, of a conventionally processed alloy. Scientists then move the prepared specimens to a conventional nanoindenter device outfitted with a flatpunch indentation tip. The nanoindenter imposes uniaxial compression on the microsamples and records highfidelity load-displacement measurements as the samples deform. With the development of this novel mechanical behavior test capability, researchers now envisage sampling the local mechanical effects of material microstructure and statistically incorporating these results in improved constitutive response surfaces, which could be used in simulations of critical component features.

Dr. Dennis M. Dimiduk, Dr. Michael D. Uchic, and Dr. Peter S. Meltzer (Anteon Corporation), of the Air Force Research Laboratory's Materials and Manufacturing Directorate, wrote this article. For more information, contact TECH CONNECT at (800) 203-6451 or place a request at http://www.afrl.af.mil/techconn/index.htm . Reference document ML-H-04-10.