ETS researchers develop new methodology for wind tunnel calibration
In recent years, the École de Technologie Supérieure (ETS) Research Laboratory in Active Controls, Avionics, and Aeroservoelasticity (LARCASE) has acquired several research apparatus—a research flight simulator Cessna Citation X, an open return subsonic wind tunnel, and a flight autonomous system (UAV)—making it one of the few multidisciplinary research laboratories in Canada with a wide range of equipment with the capabilities of simulating aircraft models, especially airfoils, and validating the models with experimental data collected on the ground (wind tunnel) and in-flight (UAV).
The diffusing section consists of a wide-angle diffuser, a large settling chamber, a contraction section, and a test section. From the static pressure buildup the flow is projected to an oval-shaped circular pattern flow straightener. Then the flow goes through a series of five filters: the first is a honeycomb-shaped filter, and the other four are nylon squared-shape filters positioned 0.5 m from each other.
The settling section allows the flow to go from a turbulent state to a laminar flow.
LARCASE’s wind tunnel has two test sections. The main one is 0.6 x 0.9 m made in wood with Plexiglass removable doors able to reach 0.12 Mach. The second test section, half the volume of the first one, is able to reach 0.18 Mach.
LARCASE researchers used the Extended Great Deluge (EGD) algorithm in hybridization with the neural networks to find the predicted pressure inside of the test chamber of the open return subsonic wind tunnel.
The hybrid NN-EGD method is proposed to control the pressure distribution, by varying the coordinates of the point inside the test chamber, wing speed, and temperature. The EGD algorithm is used to obtain the optimal network configuration such that the error is as small as possible. Qualitative performance measures are used that describe the learning abilities of a given trained neural network.
To train and test the NN, ANSYS Fluent software is used to determine the pressure values inside the test chamber. The coordinate (X, Y, Z), the wind velocity (V), and the temperature (T) of the test chamber represent the inputs of the model, the output is the pressure. A total of 81628 points are used to train, validate, and test NN-EGD. The validation data represent 15 % of the data set, 15% of the data set to test the approach, and the rest to train NN. These points are selected randomly. Using the EGD algorithm, many architectures are tested. The objective was to obtain the simplest configuration to give the best results in a short time of compilation. After randomly trying different combinations of numbers of neutrons and layers, the best results are obtained using a NN architecture composed of four layers feed-forward network. The number of neurons in each layer is 12, 15, 10, and 1, respectively. The NN inputs are X, Y, Z, V, and T. The output is the pressure.
The optimal architecture obtained using the EGD algorithm and obtaining the best results is composed of four layers feed-forward network. The NN-EGD are implemented in Matlab.
To test the approach, researchers used 14440 points. The average error of the obtained results in plane 1 is equal to 7.22%. In the plane 2, the error is 4.42%, and the error in the plane 10 is equal to 3.16% of the theoretic pressure.
By using this approach, the researchers successfully obtained the value of the pressure in each point of the dataset according to the coordinates of each point, the wind speed, and temperature of the test chamber.
This article is based on SAE International technical paper 2013-01-2285 by Abdallah Ben Mosbah, Manuel Flores Salinas, Ruxandra Botez, and Thien-my Dao of École de Technologie Supérieure,
Top Stories
INSIDERManned Systems
Abort Motor for NASA’s Orion Spacecraft Successfully Tested
INSIDERUnmanned Systems
How AI And Supervised Autonomy Will Change Combat
INSIDERTest & Measurement
Scientists Work to Enhance Faster-Than-Sound Jet Engines
INSIDEREnergy
Airbus’ High-Voltage Battery Technology Prepares for Flight Test
INSIDERDesign
Autonomous Freight Aircraft Achieves Design/Development Milestones
INSIDERResearch Lab
Purdue Strengthens National Security Focus with New Propulsion Lab
Webcasts
Photonics/Optics
Next-Generation Optics and Coating Technology
Software
Integrated Modeling and Simulation of Airframe Structures in the...
Medical
Artificial Intelligence and Machine Learning: Making Medical...
AR/AI
Building the AI/ML Data Autobahn for ADAS/AV Development
Energy
Engineering Construction Vehicles for Battery-Electric Solutions