Vertical Take-Off and Landing UAV
The Air Force has announced that the MLB V-Bat Vertical Take-Off and Landing (VTOL) UAV from the MLB Company (Sunnyvale, CA) has been selected for a Phase II SBIR award. The military branch seeks a vehicle that has an 8-ft wingspan, 10-hour endurance, 55-lb gross take-off weight, and 70-mph cruise speed. The V-Bat’s combination of VTOL operational convenience with the safety of a shrouded fan and fixed-wing duration in a small UAV system will enable local situational awareness for UAV operations in confined areas. Last year, under a DARPA contract, MLB demonstrated precise emplacement of small payloads from the V-Bat, operating in hover mode under a vision-based control system.
A strong mission pull exists for Tier-II sized long endurance VTOL vehicles. The V-Bat design was originally solicited by a commercial customer for aerial mapping. MLB Company has been approached by potential customers in several government agencies and by commercial groups seeking an anti-piracy solution.
The V-Bat incorporates a ducted fan lift system instead of conventional tail surfaces on a streamlined airframe, enabling vertical take-off, landing, and aerodynamic efficiency at high cruise speeds. The design concept merges the platform of sailplane-like wings and slender fuselage with the mechanically simple, ducted-fan lift system that provides control and lift for vertical flight, while simultaneously replacing the aircraft’s tail surfaces. The configuration, specifically the dual-use of the ductedfan lift system as the empennage of the aircraft, represents a minimal deviation from proven fixed-wing aircraft designs.
A key problem with many previous tail-sitter designs has been the high probability of tip-over at touchdown, which may damage the aircraft especially if it uses exposed rotor blades. The prototypes have demonstrated the ability to tip-over on landing and not sustain damage. A shock absorbing noseskid system keeps the loads from tipping over, and the duct shields the rotor and vanes from any damage when contacting the ground.
The system has been extensively field tested. A typical rotorcraft achieves an effective lift-to-drag (L/D) ratio of 6:1 in level flight. The V-Bat has a ratio of nearly 15:1 L/D.
LaserMotive Kent, WA 253-872-3300 www.lasermotive.com
For Free Info Click Here
Top Stories
INSIDERRF & Microwave Electronics
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERElectronics & Computers
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERAerospace
Airbus Starts Testing Autonomous Landing, Taxi Assistance on A350 DragonFly...
INSIDERSensors/Data Acquisition
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
INSIDERAerospace
PAC-3 Missile Successfully Intercepts Cruise Missile Target - Mobility...
INSIDERUnmanned Systems
Air Force Pioneers the Future of Synthetic Jet Fuel - Mobility Engineering...
Webcasts
Sensors/Data Acquisition
Driver-Monitoring: A New Era for Advancements in Sensor Technology
Manufacturing & Prototyping
Tailoring Additive Manufacturing to Your Needs: Strategies for...
Automotive
How to Achieve Seamless Deployment of Level 3 Virtual ECUs for...
Photonics/Optics
Specifying Laser Modules for Optimized System Performance
Electronics & Computers
Leveraging Machine Learning in CAE to Reduce Prototype Simulation and Testing
Medical
Trending Stories
INSIDERElectronics & Computers
MIT Report Finds US Lead in Advanced Computing is Almost Gone