Energy Harvesting for Soft-Matter Machines and Electronics
A new class of soft multifunctional materials could be used to convert mechanical deformation from vibrations and stretching into electrical energy.
Air Force (AF) materials capable of dramatic changes in shape and rigidity require soft-matter electronics that support functionality without interfering with the mechanics of the host structure. This program introduced a new class of soft, multifunctional materials that can be used to power these systems by converting elastic strain energy from large deformations into electricity. These materials are composed of soft elastomers embedded with a suspension of liquid metal (LM) droplets that control the electrical properties of the composite.

Depending on their composition and microstructure, these LM-embedded elastomers (LMEEs) can be tailored to exhibit exceptionally high electric conductivity, electric permittivity, and/or thermal conductivity. LMEEs with high permittivity can function as high-k dielectrics for storing and harvesting electrostatic energy. When integrated with an elastically deformable AF structure, they have the potential to generate electricity as the host structure stretches, twists, or bends under external loading. This external loading may arise from air drag, wind, ambient vibrations, collisions, etc. and represents mechanical work that would be otherwise dissipated through damping.
As stated, the electric properties of soft elastomers can be tailored by adding a suspension of liquid metal droplets. Depending on their composition, these LM-embedded elastomers can exhibit either high electric conductivity (σ ~ 104 S/m) or permittivity (εr ~ 10-50). Such materials can be used as electrodes and dielectrics, respectively, in a soft-matter capacitive generator that converts mechanical work into electrostatic energy through changes in capacitance and electrical enthalpy. Because the inclusions are liquid phase, these LM-embedded elastomer composites exhibit the same mechanical properties of unfilled rubber – low elastic modulus (0.1-1 MPa), high strain limit (up to 600%), and low mechanical hysteresis. Such properties are required in order for the generator to support large elastic deformations and maximize electrical enthalpy change.
The dielectric composites are composed of either polydimethylsiloxane (PDMS) or polyurethane (PU) embedded with a non-percolating suspension of LM microdroplets. Gallium-based alloys such as Ga-In-Sn and Ga-In eutectic (EGaIn) are used as the liquid metal. Referring to the optical and Nano-CT images in the accompanying figure, the LM suspension is polydisperse and has a random but statistically uniform spatial distribution. Despite the high-volume fraction φ of LM, the droplets do not form a percolating network and instead function as an “artificial dielectric” that significantly increases the effective electric permittivity (εr) of the composite. In the case of φ = 0.5, εr is 4x greater than the permittivity of the unfilled elastomer (εm).
This work was done by Carmel Majidi of Carnegie Mellon University for the Air Force Research Laboratory. AFRL-0286
This Brief includes a Technical Support Package (TSP).

Energy Harvesting for Soft-Matter Machines and Electronics
(reference AFRL-0286) is currently available for download from the TSP library.
Don't have an account? Sign up here.
Top Stories
INSIDERData Acquisition
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERCommunications
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERSensors/Data Acquisition
Airbus Starts Testing Autonomous Landing, Taxi Assistance on A350 DragonFly...
INSIDERManned Systems
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
INSIDERWeapons Systems
PAC-3 Missile Successfully Intercepts Cruise Missile Target - Mobility...
INSIDERUnmanned Systems
Air Force Pioneers the Future of Synthetic Jet Fuel - Mobility Engineering...
Webcasts
Software
Leveraging Machine Learning in CAE to Reduce Prototype Simulation and Testing
Sensors/Data Acquisition
Driver-Monitoring: A New Era for Advancements in Sensor Technology
Electronics & Computers
Tailoring Additive Manufacturing to Your Needs: Strategies for...
Automotive
How to Achieve Seamless Deployment of Level 3 Virtual ECUs for...
Photonics/Optics
Specifying Laser Modules for Optimized System Performance
Medical
Trending Stories
NewsPower
Volvo CE Previews ConExpo 2023 Display
ArticlesManufacturing & Prototyping
Low Distortion Titanium in Laser Powder Bed Fusion Systems