Fly-by-Wire System for eVTOL Vehicles Will Enable Safe, Efficient, Flight

BAE Systems and Supernal announced an agreement to design and develop the flight control computer for Supernal’s electric Vertical Takeoff and Landing (eVTOL) vehicle. In support of Supernal, BAE Systems will help define the architecture of a lightweight, fly-by-wire system for its autonomous-capable aircraft. The fly-by-wire controls will safely and efficiently control the aircraft during flight.
“The development of advanced, high-integrity controls is crucial to meet the demands of electric aircraft,” said Ehtisham Siddiqui, vice president and general manager of Controls and Avionics Solutions at BAE Systems. “BAE Systems is harnessing its investment in electrification and expertise in flight-critical systems to advance sustainable aviation. We look forward to working with Supernal to make this shared vision a reality.”
This next-generation system will be a compact solution that addresses the processing requirements and potential autonomy needs of Advanced Air Mobility (AAM) vehicles. It will also have the flexibility to meet the unique integration challenges of electric air taxis, as well as large regional electric aircraft. The program will leverage more than 40 years of BAE Systems’ expertise in designing and certifying flight-critical fly-by-wire systems for commercial and military aircraft, including vertical takeoff platforms. Work on the flight control system will be conducted at the company’s facility in Endicott, New York.
Supernal is a U.S.-based advanced air mobility company, developing a commercially viable eVTOL vehicle to the highest commercial aviation standards and working to responsibly co-create the supporting ecosystem and integrate it with existing transit options. As part of Hyundai Motor Group, Supernal is both a new business and an established company, with plans to harness its automotive heritage to revolutionize air travel and make advanced air mobility accessible to the masses.
Top Stories
INSIDERAerospace
Air Force Completes First Magnetic Navigation Flight on C-17 - Mobility...
Technology ReportEnergy
Mazda’s Revived Rotary Engine Starts Production - Mobility Engineering...
INSIDERDefense
Army Launches M1E3 Tank Development, Cancels M1 Abrams Upgrade Program -...
INSIDERAerospace
Air Force Awards JetZero $235 Million to Develop Blended Wing Body Demonstrator...
INSIDERCommunications
Air Force to Buy Archer eVTOL Under New Contracts - Mobility Engineering...
INSIDERDefense
DoD's First Electric Aircraft Charging Station is a BETA Supercharger -...
Webcasts
Software
Leveraging Electronics Digital Twins on AWS to Accelerate...
Defense
Choosing a Silicone for Operation in Harsh Thermal Environments
Sensors/Data Acquisition
A Guide to Unlocking Precision and Efficiency with 3D Scanning...
Electronics & Computers
Introduction to the Integration of Electronics Switching and...
Energy
Miniaturized Solutions for Battery Development