Composites Self-Heal at Very Low Temperatures
Scientists developed a method of allowing materials, commonly used in aircraft, to self-heal cracks at temperatures well below freezing. A healing efficiency of more than 100% at temperatures of -60 °C was obtained in a glass fiber-reinforced laminate, but the technique could be applied across a majority of self-healing composites.
Tests were run using a copper foam sheet or a carbon nanotube sheet as the conductive layer. The latter of the two was able to self-heal more effectively, with an average recovery of 107.7% in fracture energy and 96.22% in peak load. The group will look to develop new healing mechanisms for more composites that can recover effectively, regardless of the size of faults in any condition.
Top Stories
INSIDERAerospace
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERData Acquisition
Air Force Completes First Magnetic Navigation Flight on C-17 - Mobility...
INSIDERWeapons Systems
Air Force Performs First Test of Microwave Counter Drone Weapon THOR - Mobility...
INSIDERSoftware
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERDesign
Navy Selects Lockheed Martin and Raytheon to Develop Hypersonic Missile -...
INSIDERAerospace
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
Webcasts
Software
Accelerate Software Innovation Through Target-Optimized Code...
Manufacturing & Prototyping
How Metal Additive Manufacturing Is Driving the Future of Tooling
Electronics & Computers
Microelectronics Data Security: Better with Formal Methods
Aerospace
Solving Complex Thermal Challenges of Today’s Space Market
Automotive
Traction-Motor Innovations for Passenger and Commercial Electric...
Medical
Trending Stories
INSIDERResearch Lab
Air Force Performs First Test of Microwave Counter Drone Weapon THOR
ArticlesAerospace
Single Event Effects in High Altitude Aerospace Sensor Applications