Airborne Sense-and-Avoid Radar for UAVs

Widespread use of unmanned aerial vehicles (UAVs) within the National Airspace System is limited because of regulatory restrictions on their access to shared airspace. The Airborne Sense and Avoid (ABSAA) Radar Panel, a phased array antenna developed by MIT Lincoln Laboratory, has the potential to facilitate the introduction of UAVs into the national airspace.
The lightweight sensor enables an onboard sense-and-avoid system that performs quick and repeatable scanning of the search region, meets the exacting surveillance timeline demanded of a sense-and-avoid system, and is reliable. The ABSAA panel satisfies the constrained size, weight, and power requirements for small platforms such as UAVs, and supports both aircraft-detecting and weather-sensing modes in a single, multifunction aperture.
Top Stories
INSIDEREnergy
University of Rochester Lab Creates New 'Reddmatter' Superconductivity Material...
INSIDERSoftware
MIT Report Finds US Lead in Advanced Computing is Almost Gone - Mobility...
INSIDERElectronics & Computers
Airbus Starts Testing Autonomous Landing, Taxi Assistance on A350 DragonFly...
INSIDERManned Systems
Boeing to Develop Two New E-7 Variants for US Air Force - Mobility Engineering...
INSIDERDefense
PAC-3 Missile Successfully Intercepts Cruise Missile Target - Mobility...
INSIDERUnmanned Systems
Air Force Pioneers the Future of Synthetic Jet Fuel - Mobility Engineering...
Webcasts
Photonics/Optics
Specifying Laser Modules for Optimized System Performance
Communications
The Power of Optical & Quantum Technology, Networking, &...
Software
How to Achieve Seamless Deployment of Level 3 Virtual ECUs for Automotive...
Manufacturing & Prototyping
Tailoring Additive Manufacturing to Your Needs: Strategies for Performance and...
Sensors/Data Acquisition
Driver-Monitoring: A New Era for Advancements in Sensor Technology
Electronics & Computers
Leveraging Machine Learning in CAE to Reduce Prototype Simulation and Testing
Trending Stories
ArticlesEnergy
BriefsSensors/Data Acquisition
Real Time Physiological Status Monitoring
ArticlesMechanical & Fluid Systems
Reducing the High Cost Of Titanium
ArticlesCommunications
Solving Military Satellite, Radar and 5G Communications Challenges with...