Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
The modulators improve the transmission of RF signals on optical fibers.
Externally coupled electroabsorption modulators (EAMs) are commonly used in order to transmit RF signals on optical fibers. Recently, an alternative device design with diluted waveguide structures was developed. Bench tests show benefits of lower propagation loss, higher power handling (100 mW), and higher normalized slope efficiency. Bench tests were performed in order to characterize the optical coupling of the EAM. The photo current maximum was offset from the optical power output maximum. The transmissions vs. bias voltage curves were measured, and an XY scanner was used to record the mode field of the light exiting from the EAM waveguide in each position. The Beam Propagation Method was used to simulate the mode field and the coupling efficiency. Based on the bench tests and simulation results, a design including mechanical, optical, and RF elements was developed.
The device studied is a dilute core waveguide (DCW) electroabsorption modulator (EAM). It has a similar structure as that of a high-saturation-power waveguide photodetector. The DCW EAM was designed to enhance the optical power handling and provide a greater spur-free dynamic range relative to a more conventional EAM design. The approach used to achieve this goal was to reduce the optical confinement factor at the electroabsorption (EA) layer in order to enhance the dynamic range and the maximum power of the EAM. This approach has some effects on the assembly methods that must be utilized to form a low-loss packaged device.
A dilute waveguide EAM device was designed in an effort to increase the maximum power and the dynamic range of the device. This design of the DCW EAM was intended to spatially separate the region of maximum photocurrent and photointensity. Using an optical test setup with a lensed fiber test method, it was shown that the axes of maximum photocurrent and photointensity are separated by a distance of ~0.4 um. Using these observations, an assembly process was developed for the DCW EAM.
This work was done by Reinhard Erdmann, Richard J. Michalak, and Rebecca Bussjager of the Air Force Research Laboratory; Songsheng Tan, Nancy Stoffel, Charles Shick, Terrance McDonald, and Al Whitbeck of Infotonics Technology Center; and Ivan Shubin and Paul K. L. Yu of the University of California at San Diego. For more information, download the Technical Support Package (free white paper) at www.defensetechbriefs.com/tsp under the Photonics category. AFRL-0133
This Brief includes a Technical Support Package (TSP).

Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
(reference AFRL-0133) is currently available for download from the TSP library.
Don't have an account?
Top Stories
INSIDERDefense
Microsoft, PsiQuantum Designing Quantum Computer Prototypes for DARPA US2QC...
INSIDERAerospace
EcoPulse Testing is Helping Advance Hybrid Electric Aircraft Design for Airbus
Technology ReportMaterials
Lighter, Recyclable Body Seal from Cooper Standard Wins SAA Award
Technical InnovationPower
Cummins Unveils New B7.2 Diesel Engine
INSIDERManned Systems
SpaceX Dragon Brings Stranded Astronauts Back to Earth
INSIDERPower
Two Startups Partner to Expand Hydrogen-Powered Drone Production
Webcasts
Defense
Advancements in Pulsating Heat Pipes: Analysis and Applications in Space...
Aerospace
2025 Battery & Electrification Summit
Aerospace
A Fork in the Road: The Potential of Debian Linux for...
Energy
Optimizing Electric Powertrains: Advanced Materials for...
Imaging
Breakthrough in Infrared and Visible Imaging: One Dataset with...
Test & Measurement
Improving Rocket and Flight Vehicle Testing Under Capital...