UK Flight Test Evaluates "Un-Jammable" Quantum Navigation Systems
In a first-of-its-kind achievement, the U.K. has successfully completed commercial flight trials of advanced quantum-based navigation systems that cannot be jammed or spoofed by hostile actors.
While GPS jamming is currently relatively rare and does not directly impact an aircraft’s flight path, new quantum-based Positioning, Navigation, and Timing (PNT) systems could, over time, offer one part of a larger solution to providing highly accurate and resilient navigation that complements current satellite systems – which could help ensure that the thousands of flights that take place around the world daily, proceed without disruption.
Infleqtion, a quantum technology firm, in collaboration with aerospace companies BAE Systems and QinetiQ, completed the trials at MoD Boscombe Down in Wiltshire, with Science Minister Andrew Griffith aboard the final test flight on Thursday 9 May.
These tests are the first time that this sort of ground-breaking technology has been tested in the UK on an aircraft in flight, and the first such flights worldwide that have been publicly acknowledged.
Led by Infleqtion and in collaboration with industry and academic partners, this project has received backing of nearly £8 million from the government. This funding, together with the £2.5 billion National Quantum Strategy and the National Quantum Technologies Programme, aims to cement the UK’s position as a leading quantum-enabled economy.
In a series of test flights, the team led by Infleqtion has demonstrated two ground-breaking quantum technologies: the compact Tiqker optical atomic clock and a tightly confined ultra-cold-atom-based quantum system, both aboard QinetiQ’s RJ100 Airborne Technology Demonstrator, a modified aircraft.
The technology being tested on the flight will form part of a Quantum Inertial Navigation System (Q-INS), which has the potential to revolutionize PNT, with the system offering exceptional accuracy and resilience, independent of traditional satellite navigation using GPS.
PNT helps us know our location, navigate, and keep track of time. The cornerstone of modern PNT technology is precision clocks. These ultra-accurate timekeepers are crucial for various applications, and portable production of ultracold atoms is another key piece of the puzzle. Ultracold atoms - atoms that have been cooled to temperatures near absolute zero (the coldest possible temperature) - are ideal for building quantum accelerometers and gyroscopes, which form the heart of a Q-INS.
The test is part of a project funded by UK Research and Innovation (UKRI) specifically focusing on creating quantum sensors to address the UK’s heavy reliance on GNSS/GPS for location, navigation and timing data. This dependence creates a vulnerability, as a single point of failure (like jamming or spoofing GPS signals) could disrupt critical economic, defence, and strategic activities.
The consortium working alongside Infleqtion includes Fraunhofer Centre for Applied Photonics, Alter Technology UK, Caledonian Photonics, Redwave Labs, PA Consulting, BAE Systems, and QinetiQ.
"Modern infrastructure is increasingly dependent on highly accurate timing and navigation derived from satellite signals. These flight tests mark the culmination of two excellent projects, funded through UKRI, which Infleqtion has had the vision to create and the deftness in leadership to execute with an outstanding team of collaborators," said Roger McKinlay, Challenge Director Quantum Technologies at Innovate UK, part of UK Research and Innovation (UKRI).
The completion of these flight trials marks a significant milestone towards Mission 4 of the UK’s National Quantum Strategy. By 2030, this mission aims to deploy quantum navigation systems on aircraft, providing next-generation accuracy and resilience independent of satellite signals. The successful testing of an optical atomic clock, Infleqtion’s Tiqker, and core elements of a quantum inertial sensor aboard QinetiQ’s RJ100 Airborne Technology Demonstrator represents a breakthrough in airborne quantum technology.
Top Stories
INSIDERManned Systems
Are Boeing 737 Rudder Control Systems at Risk of Malfunctioning?
Technology ReportPropulsion
Off-Highway Hybrids Are Entering Prime Time
INSIDERRegulations/Standards
Is the Department of Defense Stockpiling Enough Critical Materials?
INSIDERSensors/Data Acquisition
Designing Next-Generation Carbon Dioxide Removal Technology for Better Life in...
INSIDERRF & Microwave Electronics
Barracuda: Anduril's New Software-Defined Autonomous Air Vehicles
NewsEnergy
Webcasts
Aerospace
The Benefits and Challenges of Enabling Direct-RF Sampling
Test & Measurement
The Testing Equipment You Need to Keep Pace with Evolving EV...
Automotive
Advances in Zinc Die Casting Driving Quality, Performance, and...
Automotive
Fueling the Future: Hydrogen Solutions for Commercial Vehicle...
Aerospace
Maximize Asset Availability in the Aerospace and Defense Industry
Aerospace
Similar Stories
INSIDERRF & Microwave Electronics
Leonardo to Design Next Generation Atomic Clock for Galileo Satellites
INSIDERData Acquisition
Air Force Completes First Magnetic Navigation Flight on C-17
INSIDERSensors/Data Acquisition
Quantum Sensing Enters DoD Landscape in First-of-a-Kind Gyroscope Space...
BriefsMechanical & Fluid Systems
Active Flow Control Demonstrated on “Airborne Wind Tunnel”
INSIDERAerospace
NASA Demonstrates X-ray Navigation in Space