New Video Card Enables Supersonic Vision System for NASA's X-59 Demonstrator

A new video card developed by WOLF Advanced Technology combines high-definition video with other video feeds in order to present a near real-time external view in the cockpit of the X-59 experimental aircraft that has no front-facing cockpit windshield. (Image: WOLF Advanced Technology USA Inc.)

During a Jan. 12, 2024 rollout ceremony at Lockheed Martin's Skunk Works facility in Palmdale, California, NASA debuted the new X-59 quiet supersonic aircraft. The aircraft has no front-facing cockpit windshield, with its pilots relying on the eXternal Vision System (XVS) enabled by the combination of a new video card developed by WOLF Advanced Technology and several commercial and flight-certified cameras.

The X-59 Quiet SuperSonic Technology (QueSST) is a demonstrator aircraft that NASA is using to help civil aviation regulators develop airworthiness noise standards to certify and regulate future supersonic transport designs. For 50 years, the U.S. and other nations have prohibited such flights because of the disturbance caused by loud, startling sonic booms on the communities below. The X-59 is expected to fly at 1.4 times the speed of sound, or 925 mph. Its design, shaping and technologies will allow the aircraft to achieve these speeds while generating a quieter sonic thump.

At 99.7 feet long and 29.5 feet wide, the aircraft’s shape and the technological advancements it houses will make quiet supersonic flight possible. The X-59’s thin, tapered nose accounts for almost a third of its length and will break up the shock waves that would ordinarily result in a supersonic aircraft causing a sonic boom.

Due to this configuration, the cockpit is located almost halfway down the length of the aircraft – and does not have a forward-facing window. Instead, the QueSST team developed the XVS, a series of high-resolution cameras feeding a 4K monitor in the cockpit.

In a news story published by NASA following the X-59's debut, the agency further details how they were able to create XVS. WOLF Advanced Technology was one of the companies NASA contracted to help build the XVS. The project required a new video-processing technology that the company has now added to its product line. This FGX2 hardware is included in many WOLF products, said Greg Maynard, Chief Technology Officer (CTO).

The company already supplied aerospace video capture and display flight hardware, but there was no flight-certified system that had the high definition necessary to supplant an actual windshield. So NASA developed a hybrid system that leveraged WOLF’s expertise.

The XVS includes an ultra-high-definition (UHD) camera incorporating commercial, off-the-shelf hardware on top of the X-plane and a standard, flight-certified camera system on the underside. The top camera provides visual quality approaching human sight, with the standard camera underneath acting as a failsafe. But the company needed a new technology to process both data streams simultaneously.

NASA’s X-59 quiet supersonic research aircraft sits on the apron outside Lockheed Martin’s Skunk Works facility in Palmdale, California during its recent debut. (Image: Lockheed Martin Skunk Works)

“For the X-59, we had to meet certain specific power, space, and heat-load requirements, and we had to survive at 65,000 feet, 130º F, and minus 0º F,” said Steve Williams, XVS software lead with NASA’s Langley Research Center in Hampton, Virginia. “It was something that had never been done before in certified flight hardware and software.”

Under those harsh conditions, the video cards must continuously fuse the different video feeds into the nearly real-time video display in the cockpit.

Just presenting the camera image wouldn’t be good enough, said Williams. The human eye is more sensitive than any camera, so the vision system replacing it required “a lot of image processing” that had to happen quickly enough that it appeared as a continuous image, “just like you’re looking out the window,” he said.

The new hardware and software WOLF created for the XVS meets demanding image processing and display requirements, Maynard said. Supersonic commercial flight won’t be possible until new aviation rules lift the overland ban, but commercial space companies can now use the WOLF technologies in their vehicles to meet rising demand for UHD resolution. Maynard credits NASA with being ahead of the industry, giving the company a chance to develop the technology early.

Flight-tested by NASA, the hardware now supports other camera systems on aircraft and spacecraft experiencing punishing temperature and altitudes. The high data rate, high-density video capture from multiple cameras can be used for machine vision, synthetic vision, or video processing applications.

“People really want to know the work they’re doing is important, and the projects NASA executes are meant to try to improve the world in some way,” said Maynard. “It’s nice to be able to contribute to something like that.”