REMA Program to Create 'Autonomy Adapter' for Commercial Drones Used in Combat Operations
Commercial drone technology is advancing rapidly, providing cost-effective and robust capabilities for a variety of civil and military missions. As small aerial vehicles play increasingly important military roles on the battlefield, adversaries are developing electromagnetic countermeasures to disrupt communication links between operator and drone, forcing the vehicle to abort mission, return to its starting point, or crash.
The Defense Advanced Research Projects Agency’s (DARPA) Rapid Experimental Missionized Autonomy (REMA) program aims to enable a drone to autonomously continue its predefined mission when connection to the operator is lost. To achieve this goal, REMA tasks performers with building a subsystem that allows autonomous operation of a variety of commercially available small drones without being tied to a specific drone design. The program also seeks to create mission-specific autonomy software through rapid, monthly spirals of development.
“REMA is focused on creating autonomous solutions to maximize effectiveness of stock commercial and small military drones on the battlefield,” said Lael Rudd, Program Manager in DARPA’s Tactical Technology Office. “Through creating an autonomy adapter that works with all commercial drones, regardless of manufacturer, and by developing mission-specific autonomy software that is constantly refreshed and easy to upload prior to a mission, we aim to give drone operators the advantage in fast-paced combat operations. Speed in tech development and on the battlefield is key, and REMA aims to deliver.”
The 18-month, single-phase program is divided into two technical areas: 1) A drone-autonomy adapter interface and 2) mission-specific autonomy software that runs on the adapter. The autonomy adapter will be designed to agnostically detect the drone type and adjust operational parameters to enable the drone to receive mission-specific autonomy software. The autonomy software will be completed in development cycles starting at three-month intervals and accelerating to one-month intervals, to repeatedly provide new and improved autonomy capabilities.
Top Stories
INSIDERManned Systems
Are Boeing 737 Rudder Control Systems at Risk of Malfunctioning?
Technology ReportPropulsion
Off-Highway Hybrids Are Entering Prime Time
INSIDERRegulations/Standards
Is the Department of Defense Stockpiling Enough Critical Materials?
INSIDERSensors/Data Acquisition
Designing Next-Generation Carbon Dioxide Removal Technology for Better Life in...
INSIDERRF & Microwave Electronics
Barracuda: Anduril's New Software-Defined Autonomous Air Vehicles
NewsEnergy
Webcasts
Aerospace
The Benefits and Challenges of Enabling Direct-RF Sampling
Test & Measurement
The Testing Equipment You Need to Keep Pace with Evolving EV...
Automotive
Advances in Zinc Die Casting Driving Quality, Performance, and...
Automotive
Fueling the Future: Hydrogen Solutions for Commercial Vehicle...
Aerospace
Maximize Asset Availability in the Aerospace and Defense Industry
Aerospace
Similar Stories
INSIDERRobotics, Automation & Control
How AI And Supervised Autonomy Will Change Combat
INSIDERUnmanned Systems
Osprey MK III Completes First Autonomous Flight
ArticlesAR/AI
DoD to Deploy Thousands of Low Cost Autonomous Systems Under Replicator Program
INSIDERDefense
International Military Trial Tests Robotic Combat Vehicles in Australia
INSIDERAerospace
Four Companies to Design Air Force Enterprise Test Drone Prototypes