Conjugated Polymers Having High Charge-Carrier Mobilities
Progress has been made toward realization of practical polymer semiconductor devices.
A three-year research project encompassed multiple studies of (1) polymer semiconductors that exhibit relatively high electric-charge- carrier mobilities and (2) applications of these polymers in electronic (including optoelectronic and nanoelectronic) devices. Although these polymers are of broad importance to all polymer semiconductor devices — including light-emitting diodes, photovoltaic cells, photodetectors, and electrophotographic imaging devices — the focus in this project was largely upon the use of these polymers in thin-film transistors, organic light-emitting diodes, and related light-emitting transistors.
The research included studies of synthesis of new polymer and oligomer semiconductors; investigation of novel processing techniques for realizing nanocrystalline, microcrystalline, and single crystalline polymer semiconductor thin films; measurement of charge-carrier mobilities; and design, fabrication, and evaluation of high-performance field effect transistors, organic light-emitting diodes, and light-emitting transistors. The major accomplishments of this research were the following:
- Field-effect electron mobilities as high as 0.1 cm2/(V•s) were observed in thin films of ladder poly(benzobisimidazobenzophenanthroline) [BBL] that had been formed by spin coating. This level of electron mobility is the highest observed to date in a conjugated polymer semiconductor, was found to vary strongly with the intrinsic viscosity (or molecular weight) of the polymer, and was found to be very stable in air and oxygen.
- The first-ever polymer-based complementary inverter was fabricated (see figure) and demonstrated to function substantially as intended. (As used here "complementary" signifies that the device is analogous to a complementary metal oxide/semiconductor inverter).
- A new class of ladder-type bisindoloquinoline semiconductors exhibiting a mobility of 1.0 cm2/(V•s) was synthesized.
- Ambipolar organic field-effect transistors were made from blends of p- and n-type polymers.
- The field-effect mobility of holes in regioregular poly(3 alkylthiophene)s was found to exhibit a non-monotonic dependence on alkyl chain length, showing a maximum mobility with hexyl. Fundamental insights into the structural factors that govern high-mobility charge transport and recombination in polymer semiconductors were also achieved.
This work was done by Samson A. Jenekhe, John D. Wind, Amit Babel, Yan Zhu, Christopher Tonzola, Jessica Hancock, Pei Tzu Wu, and Jessica Lembong of the University of Washington for the Air Force Office of Scientific Research.
AFRL-0082
This Brief includes a Technical Support Package (TSP).

Conjugated Polymers Having High Charge-Carrier Mobilities
(reference AFRL-0082) is currently available for download from the TSP library.
Don't have an account?
Top Stories
INSIDERDefense
Microsoft, PsiQuantum Designing Quantum Computer Prototypes for DARPA US2QC...
INSIDERAerospace
EcoPulse Testing is Helping Advance Hybrid Electric Aircraft Design for Airbus
Technology ReportMaterials
Lighter, Recyclable Body Seal from Cooper Standard Wins SAA Award
Technical InnovationPower
Cummins Unveils New B7.2 Diesel Engine
INSIDERManned Systems
SpaceX Dragon Brings Stranded Astronauts Back to Earth
INSIDERPower
Two Startups Partner to Expand Hydrogen-Powered Drone Production
Webcasts
Defense
2025 Battery & Electrification Summit
Software
A Fork in the Road: The Potential of Debian Linux for...
Automotive
Optimizing Electric Powertrains: Advanced Materials for...
Imaging
Breakthrough in Infrared and Visible Imaging: One Dataset with...
Defense
Improving Rocket and Flight Vehicle Testing Under Capital...