Orion Spacecraft Launched to Moon on Historic Artemis I Mission
With the backdrop of a Florida starlit sky, NASA's Artemis I mission, with the Lockheed Martin-built Orion spacecraft on top, launched to the Moon and propelled the world into a new era of human deep space exploration. This test flight is the first in a series of missions under NASA's Artemis program, which will result in the first woman and first person of color landing on the Moon.
Orion lifted off aboard NASA's Space Launch System (SLS) rocket and two hours later the spacecraft separated from the rocket's upper stage traveling at 22,600 mph. This put it on a trajectory to break away from the gravity of the Earth and make its way to the Moon.
With this successful launch, the planned 25.5-day mission began. It will initially take several days to reach the Moon and fly above its surface. Using the Moon's gravitational force, it will propel into a unique distant retrograde orbit that will take it about 40,000 miles beyond the backside of the Moon. Orion will orbit the Moon and collect data to allow mission controllers to assess the performance of the spacecraft and its payloads. Orion will fly close to the Moon and use a precisely timed engine firing in conjunction with the Moon's gravity to accelerate back toward Earth – traveling at 25,000 mph as it enters the planet's atmosphere. The spacecraft will splash down off the coast of San Diego, California.
With a focus on leaning into commercial partnerships and building innovations that will prepare the industry for a future crewed mission, Lockheed Martin has several notables on board for the historic ride:
- Callisto: Lockheed Martin partnered with Amazon and Cisco to develop Callisto, a technology demonstration payload installed inside and interfacing with Orion during the Artemis I mission. Since Artemis I is uncrewed, Callisto was designed to test and demonstrate how commercial technology could be used to support future crewed missions in space. During the mission, controllers will operate the payload from the Johnson Space Center.
- LunIR CubeSat: One of 10 small satellites riding along with Artemis I, the Lockheed Martin-funded LunIR is a technology demonstration which will take images of the Moon to test the company's ultra-compact, novel infrared sensor that maps the Moon in both day and night. The team will apply learnings from this LunIR endeavor to future lunar and planetary scouting missions to support lower cost, applicable small satellites, and technology demonstrations.
- AstroRad Vest: The Artemis I mission will also test AstroRad, a radiation-shielding vest developed by StemRad, a partnership between Lockheed Martin and the Israel Space Agency. The vest is made for space travel and is modeled after anti-radiation vests used by first responders on Earth. The MARE experiment put two torsos aboard the spacecraft – one wearing an AstroRad vest and one without to help determine exactly how much protection it will offer astronauts.
Top Stories
INSIDERDesign
This Robot Dog Detects Nuclear Material and Chemical Weapons
ArticlesEnergy
INSIDERDesign
New Anduril, Skydio Drones Start Field Testing in Romania
INSIDERData Acquisition
Atomic Fountain to Host Defense Research for Quantum Sensing
INSIDERAerospace
Testing the Viability of Autonomous Laser Welding in Space
INSIDERRF & Microwave Electronics
Webcasts
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management and XiL Testing
Unmanned Systems
Countering the Evolving Challenge of Integrating UAS Into...
Aerospace
Best Practices for Developing Safe and Secure Modular Software
Manufacturing & Prototyping
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Unmanned Systems
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing