Autonomous Transit Bus Nears Its First Year of Operation
Michigan State University’s SAE Level 4 bus racks up miles in daily use.
Since May 2022, Michigan State University students, faculty and staff have been able to ride within campus boundaries on an autonomous electric bus, one of the largest automated-driving transit buses in the U.S. The bus, manufactured by Karsan, is known as e-ATAK. It features control software by Adastec Corp., which claims to be the first and only company to deploy SAE Level 4 automated buses on public roads, according to Dr. Ali Peker, Adastec CEO.
On a 3.3-mile (5.3-km) route, riders can shuttle between the MSU Auditorium and a university commuter lot during daytime hours. With a top speed of 25 mph (40 km/h), the 22-seat, 27-ft-long (8.2-m) automated passenger bus is guided by a sophisticated sensor suite that includes five lidars, eight red-, green-, blue-wavelength cameras, two thermal cameras, one radar sensor, a high-precision global navigation satellite system, 16 ultrasonic sensors, a vehicle-to-everything (V2X) onboard communications module and onboard cellular-V2X onboard communications.
The collective array of sensors, cameras and Adastec’s automated software stack (flowride.ai) enable the bus to detect objects, brake, accelerate, change lanes and perform conventional driving maneuvers. Seven intersections along the route are equipped with vehicle-to-infrastructure (V2I) technology to facilitate bus guidance. The e-ATAK bus calculates object movement a minimum of 10 times per second, providing vital information at the intersections, designated bus stops and pedestrian crossings. If a problem occurs, a solution follows.
“We experienced a miscommunication with the technology, which triggered Adastec to develop a system that can override wrong or missing V2I communication signals,” Dr. Peker explained, noting a human operator is ready to take onboard control if necessary.
Prior to its public usage launch at MSU, the bus, its route and the infrastructure were validated by the NHTSA. Testing and validation activities in the months leading to MSU’s automated bus deployment included simulations, x-in-the-loop testing, scenario tests, roughly 630 route test trips and approximately 1,864 mi (3,000 km) of vehicle testing on closed test tracks. Other Adastec autonomous bus deployments are in Stavanger, Norway (a revenue operation that’s fully transit-system integrated), Ploiesti, Romania (at a technology campus), Ankara, Turkey (at the Presidential Complex), Chateauroux, France (one bus), and Germany (a roadshow vehicle), according to Dr. Peker.
The autonomous bus produces relevant data for its development parties. “One of the main lessons we have learned is that even though our software has proven successful in all our deployments around the globe, we still see a lack of human acceptance of riding an autonomous public transit bus,” Dr. Peker noted. That fact has prompted more outreach to educate the public about automated-technology applications.
Raw sensor data and V2X messages are shared with professors for use in classes and for research projects, according to John Verboncoeur, MSU’s senior associate dean for research and graduate studies, College of Engineering; Professor of Electrical and Computer Engineering and Professor of Computational Mathematics, Science and Engineering.
Verboncoeur points out that it often is difficult for researchers and developers to find real-world data from different kinds of sensors. However, MSU students and researchers have access to data collected from the 30-plus sensors mounted on the autonomous bus that has traveled a public road for four seasons. That data provides a framework for developing and testing algorithms.
“Pilot and research projects like this increase the accessibility of data to researchers and students, which gives an opportunity for new research and projects,” Verboncoeur noted.
Top Stories
INSIDERManned Systems
Starliner to Perform Uncrewed Return Flight From International Space Station...
INSIDEREnergy
Archer Delivers First Midnight eVTOL to US Air Force
INSIDERElectronics & Computers
ESA to Test Canadian Startup's Diamond Quantum Sensors in Space
INSIDERAerospace
EA-37B Compass Call: The US Air Force's New Electronic Attack Aircraft
INSIDERData Acquisition
Modern Commercial Jets Create Longer Living Contrails Than Older Aircraft,...
INSIDERMaterials
Is the Department of Defense Stockpiling Enough Critical Materials?
Webcasts
Automotive
Mitigating Risks, Ensuring Reliability: Deep Dive into Automotive...
Power
Accelerating Time to Market: Tackling NVH Challenges in Electric...
Communications
Space Communications and Navigation Summit 2024
Electronics & Computers
Utilizing Model-Based Systems Engineering for Vehicle Development
Automotive
Meeting the Challenges of Software-Defined Vehicles With...
Software
Automotive Hardware Security Modules: Functionality, Design, and...
Similar Stories
ArticlesUnmanned Systems
GoMentum Begins Testing Autonomous Shuttles
NewsConnectivity
WCX 2019: Validation Can’t Replace Roadway Tests
NewsUnmanned Systems
New SMARTCenter Opens as North America’s Largest AV Test Facility
NewsTest & Measurement
Cellular V2X Pilot Launching in Virginia
NewsElectronics & Computers
Autonomous-Vehicle Ridesharing Remains in Uber’s Sightlines
ArticlesManned Systems
Auto, Tech Industries Launch PAVE Coalition for Autonomous-Vehicle Education