A Study of Two Ferrocene-Based Molecular Electronic Devices
Transport properties were determined to have metallic characteristics.
Acomputational-simulation study of two ferrocene-based molecular electronic devices was performed as part of a continuing effort to develop a capability for ab initio design of metallocene-based electronic devices in general. In addition to the obvious technological advantage for realization of the potential of molecular electronic devices, such a capability would afford an economic advantage by enabling avoidance of the cost of synthesis of many organic molecules that subsequent testing would show to be unpromising for electronic-device applications.
Each of the two devices studied consisted of a single sulfur-terminated ferrocene molecule between two infinitely long gold electrodes (see figure). In one device, the molecule was 1,3'-ferrocenedithiolate and contact with the electrodes was made via the sulfur atoms on different cyclopentadienyl rings. In the other device, the molecule was 1,3-ferrocenedithiolate and contact with the electrodes was made via the two sulfur atoms on the same cyclopentadienyl ring. The structures and the electronic and electronic-transport properties of the molecules, both in isolation and as incorporated into the devices, were simulated numerically by use of a computer program that implemented a combination of density-functional theory and a nonequilibrium-Green’s-function formalism of quantum transport.
The numerical results of the simulations were interpreted as revealing that the electrical conductance through a ferrocene molecule depends on the positions of sulfur atoms: at low applied bias voltage, the electrical conductance of the molecule in which the same cyclopentadienyl ring was connected to the electrodes via two sulfur atoms was found to exceed that of the molecule in which the connection was made via sulfur atoms on different cyclopentadienyl rings. The transmission coefficients of ferrocenedithiolate molecules were found to change with the applied bias voltage. These changes were attributed to shifts of energy levels and concomitant changes of molecular orbital shape induced by the applied electric field. The computed current-versus-voltage characteristics of the devices were further interpreted as signifying that the transport properties of the 1,3-ferrocenedithiolate molecule have metallic features.{ntbad}
This work was done by Kanichi Nakagawara of Nihon Gene Research Laboratories Inc. for the Air Force Research Laboratory. For more information, download the Technical Support Package (free white paper) at www.defensetechbriefs.com/tsp under the Electronics/Computers category. AFRL-0006
This Brief includes a Technical Support Package (TSP).
A Study of Two Ferrocene-Based Molecular Electronic
(reference AFRL-0006) is currently available for download from the TSP library.
Don't have an account?
Top Stories
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
INSIDERUnmanned Systems
This Robot Dog Detects Nuclear Material and Chemical Weapons
NewsEnergy
INSIDERManned Systems
Testing the Viability of Autonomous Laser Welding in Space
INSIDERPropulsion
Collins Develops Prototype High-Voltage Power Distribution Components for Clean...
NewsUnmanned Systems
The Unusual Machines Approach to Low-Cost Drones and Drone Components
Webcasts
Defense
Best Practices for Developing Safe and Secure Modular Software
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management...
Aerospace
Countering the Evolving Challenge of Integrating UAS Into...
Manufacturing & Prototyping
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Power
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing