Microstrip Patch Antennas Containing Multi-PBG Structures
For given gain and efficiency levels, antennas could be made smaller.
Microstrip patch antennas of a proposed type would contain photonic- bandgap (PBG) structures characterized by multiple bandgaps. In a given antenna, the PBG structure(s) could be one or more periodic dielectric and/or metal structures that could be embedded in the dielectric substrate of the antenna and/or formed on either or both faces of the dielectric substrate. As explained below, the incorporation of PBG structures would facilitate the design of a smaller antenna capable of providing a given amount of gain at a given frequency.
The basis of the present proposal is the principle that a suitably designed PBG structure or combination of structures could suppress surface and substrate waves at one or more desired operating frequencies, thereby reducing the efficiency penalty associated with the high-permittivity substrate. The PBG structure( s) could be designed to suppress surface and substrate waves over a broad range of frequencies, thereby effectively increasing the bandwidth of the antenna.
The figure presents a few examples of the essentially unlimited number of configurations for incorporating one or more PBG structure(s) into a microstrip patch antenna. Like other microstrip patch antennas, this antenna would include one or more radiating element(s) in the form of metal patches on the upper surface of the substrate and a ground plane in the form of a larger metal patch covering the entire lower surface of the substrate. Each radiating element would be connected to an external signal source or receiver by means of a coaxial feedline through the substrate.
One or more PBG structure(s) could be incorporated into this antenna in one or a combination of two or more of the following design variations:
- The substrate could consist of two or more dielectric layers, in which case a metal PBG structure or structures could be sandwiched between the dielectric layers. Such a PBG structure would consist of a repetitively patterned metal film; the structure could be, for example, a periodic array of annular holes in an otherwise solid metal film, with a central hole to accommodate the coaxial feedline.
- The substrate could consist of a single dielectric layer, and a metal-film PBG structure, possibly similar to the one described above, could be made to surround the radiating element(s) on the upper surface of the substrate.
- A PBG structure could be incorporated into the ground plane by etching a suitable periodic array of holes into the ground-plane metal film.
- A PBG structure could be incorporated into a single dielectric layer or into one or more multiple dielectric layers. Such a structure could include a periodic array of holes and/or slots in the dielectric layer, with or without metal plating of hole and/or slot surfaces as required by a specific design.
This work was done by Julie Anne LaComb of the Naval Research Laboratory. For further information, download the free white paper at www.defensetechbriefs.com under the Electronics/Computers category. NRL-0005
This Brief includes a Technical Support Package (TSP).

Microstrip Patch Antennas Containing Multi-PBG Structures
(reference NRL-0005) is currently available for download from the TSP library.
Don't have an account?
Top Stories
INSIDERDefense
Microsoft, PsiQuantum Designing Quantum Computer Prototypes for DARPA US2QC...
INSIDERAerospace
EcoPulse Testing is Helping Advance Hybrid Electric Aircraft Design for Airbus
Technology ReportMaterials
Lighter, Recyclable Body Seal from Cooper Standard Wins SAA Award
Technical InnovationPower
Cummins Unveils New B7.2 Diesel Engine
INSIDERManned Systems
SpaceX Dragon Brings Stranded Astronauts Back to Earth
INSIDERPower
Two Startups Partner to Expand Hydrogen-Powered Drone Production
Webcasts
Defense
2025 Battery & Electrification Summit
Software
A Fork in the Road: The Potential of Debian Linux for...
Automotive
Optimizing Electric Powertrains: Advanced Materials for...
Imaging
Breakthrough in Infrared and Visible Imaging: One Dataset with...
Defense
Improving Rocket and Flight Vehicle Testing Under Capital...