Heterodyne RF/Optical Links Utilizing Integrated Photonics
The integration scheme is based on use of asymmetric twin optical waveguides.
A program of research and development has been directed toward the goals of demonstrating (1) ultra-low-noise communication links in which information is conveyed by phase-modulated radio-frequency (RF) carrier signals that are, in turn, used to modulate laser-generated optical carrier signals and (2) implementation of transmitters and receivers in such links by means of several key integrated optoelectronic and photonic components. Notably, the scheme for integrating these components is based on the use of asymmetric twin optical waveguides (see figure) that afford design versatility in that they enable the use of a broad range of components useful in RF/photonic applications.
The achievements of the program include the following:
- The integration scheme was demonstrated by designing, constructing, and testing several archetypical asymmetric - twin - waveguide - based photonic integrated devices and associated electronic circuits, including not only waveguides but also laser/waveguide and photodetector/ waveguide units.
- A fully integrated heterodyne receiver capable of receiving a 1.55-μmwavelength carrier signal modulated by an RF signal of 5 GHz was designed, constructed, and tested. A wide - band - rectifier/narrow - bandreceiver design was chosen to provide cancellation of phase noise. Advantages of using an integrated balanced photodiode pair and external modulation to reduce relative-intensity noise and link nonlinearity were experimentally demonstrated.
- The use of a tunable 1.55-μm-wavelength laser as a local oscillator integrated in an asymmetric-twin-waveguide- based unit was demonstrated.
- The highest-bandwidth heterodyne RF/optical links operating at 5 GHz and 16 GHz were demonstrated. These links were based on phase modulation and represent an extremely-high-sensitivity route to optical transmission of analog signals.
This work was done by Stephen R. Forrest of Princeton University for the Army Research Laboratory. For further information, download the free white paper at www.defensetechbriefs.com under the Photonics category. ARL-0005
This Brief includes a Technical Support Package (TSP).
Heterodyne RF/Optical Links Utilizing Integrated Photonics
(reference ARL-0005) is currently available for download from the TSP library.
Don't have an account?
Top Stories
INSIDERDefense
Army Launches CMOSS Prototyping Competition for Computer Chassis and Cards
ArticlesElectronics & Computers
Microchip’s New Microprocessor to Enable Generational Leap in Spaceflight...
INSIDERSoftware
The Future of Aerospace: Embracing Digital Transformation and Emerging...
ArticlesMaterials
Making a Material Difference in Aerospace & Defense Electronics
EditorialSoftware
Making Machines Software-Defined No Simple Task
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
Webcasts
Power
Phase Change Materials in Electric Vehicles: Trends and a Roadmap...
Automotive
Navigating Security in Automotive SoCs: How to Build Resilient...
Automotive
Is Hydrogen Propulsion Production-Ready?
Unmanned Systems
Countering the Evolving Challenge of Integrating UAS Into Civilian Airspace
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management and XiL Testing
Defense
Best Practices for Developing Safe and Secure Modular Software
Similar Stories
BriefsPhysical Sciences
Automatic-Alignment Fiber Optic Coupling System for Optimal Signal Transmission
BriefsPhotonics/Optics
Photon-Counting Chirped Amplitude Modulation Ladar