Cepton Technology’s Newest Highspeed Lidar Sensor Can Spot a Tow Hitch on a Vehicle Traveling 50 Miles per Hour
The SORA P60 lidar sensor pairs with SORA-Edge computing hardware to send vehicle and environment data over Ethernet, Wi-Fi or 4G LTE to a central processing server.

Cepton Technologies, Inc. , a San Jose, California-based 3D lidar developer, has added a line scanning lidar (light detection and ranging) sensors to its SORA line-up for autonomous vehicles. The SORA-P60 uses Cepton’s Micro-Motion Technology (MMT) to achieve an industry leading 1,200 scan lines per second, to provide accurate 3D scans and to enable automated classification of objects and volumetric scanning. The sensor is currently installed at an undisclosed highway tolling facility in the United States.


When combined with Cepton’s edge-computing hardware, SORA-Edge, the new SORA-P60 lidar sensor becomes a powerful, mobile object classification and volumetric measurement device which can send vehicle and environment data over Ethernet, Wi-Fi or 4G LTE to a central processing server. This technology opens up the possibility of scanning fast moving objects, both for automotive and aerospace applications.
Active electro-optical sensors, or lidar technology, is a fast-moving business area for self-driving car and unmanned aerial vehicle (UAV) markets, enabling adaptive drive assistance systems (ADAS) for automatic driving and vehicle protection systems.
There are still many unsettled areas regarding sensor design and automated driving. One major concern is the standardization of tests and procedures for verifying, simulating, and calibrating these automated driving sensors. This topic and more are covered in detail in SAE International’s SAE EDGE™ Research Report: Unsettled Topics Concerning Sensors for Automated Road Vehicles.
William Kucinski is content editor at SAE International, Aerospace Products Group in Warrendale, Pa. Previously, he worked as a writer at the NASA Safety Center in Cleveland, Ohio and was responsible for writing the agency’s System Failure Case Studies. His interests include literally anything that has to do with space, past and present military aircraft, and propulsion technology.
Contact him regarding any article or collaboration ideas by e-mail at
Top Stories
INSIDERAerospace
Supersonic X-59 Completes Cruise Control Engine Speed Test Ahead of First Flight
INSIDERManufacturing & Prototyping
3D-Printed C-17 Replacement Part Saves Thousands for Air Force
INSIDERDefense
Aitech’s New Palm-Sized Satellite Enables Space-Based AI Processing
INSIDERManned Systems
Bombardier is Digitally Upgrading its Aircraft Design, Engineering and...
INSIDERWeapons Systems
Navy Proves Cold-Gas Approach in Hypersonic Launch Test
PodcastsPower
Engineering the EL9: Electra's Ultra Short Hybrid-Electric Aircraft
Webcasts
Manufacturing & Prototyping
Advancing Automotive Manufacturing with Digital Twins
Defense
Powering NewSpace Missions: Navigating the Cost vs. Reliability...
Aerospace
Solving Thermal Challenges in Defense: The Role of ECUs and...
Automotive
How Simulation Is Revolutionizing Automotive Design in the...
Automotive
Future-Proofing Automotive Software: Modularity, Reuse, and...
Manufacturing & Prototyping
Technological Advancements in Aluminum Brazing: Resolving 5...