Breakthroughs in 3D-Printing Give Way for Promising Textile Lithium Battery Technology
At the convergence of 3D-printing and lithium battery technology, Hong Kong researchers develop a promising textile-based, foldable battery that may find its way onto IoT-connected fabrics within automotive, aerospace, and medical industries.
A researcher team at the Hong Kong Polytechnic University (PolyU) have leveraged a previously patented PolyU additive manufacturing technology – polymer-assisted metal deposition (PAMD) – to develop a highly flexible, high-energy textile lithium battery. While bendable batteries have been a focus of research for the past decade, PolyU researchers have confirmed the textile lithium battery’s promising level of stability, durability, and safety in what may be a breakthrough for wearable electronics.
With applications ranging from healthcare monitoring, intelligent textiles, smartphones, Global Positioning System (GPS) tracking, and Internet of Things (IoT), PolyU's lightweight textile lithium battery demonstrates high energy density of more than 450 watt-hours per liter and excellent flexibility – with a bending radius of less than one millimeter and foldability of over 1,000 cycles with marginal capacity degradation.
In comparison, the existing bendable lithium batteries can only reach a bending radius of about 25 millimeters at less than 200 watt-hours per liter. The less-than-one-half-millimeter-thick textile lithium battery also possesses fast charge and discharge capabilities and cycle life comparable to conventional lithium batteries.
William Kucinski is content editor at SAE International, Aerospace Products Group in Warrendale, Pa. Previously, he worked as a writer at the NASA Safety Center in Cleveland, Ohio and was responsible for writing the agency’s System Failure Case Studies. His interests include literally anything that has to do with space, past and present military aircraft, and propulsion technology.
Contact him regarding any article or collaboration ideas by e-mail at
Top Stories
INSIDERDefense
This Robot Dog Detects Nuclear Material and Chemical Weapons
INSIDERManned Systems
Testing the Viability of Autonomous Laser Welding in Space
INSIDERTest & Measurement
Germany's New Military Surveillance Jet Completes First Flight
NewsUnmanned Systems
The Unusual Machines Approach to Low-Cost Drones and Drone Components
INSIDERSoftware
Accelerating Climate-Compatible Aircraft Design with AI
INSIDERManufacturing & Prototyping
Webcasts
Software
Best Practices for Developing Safe and Secure Modular Software
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management...
Aerospace
Countering the Evolving Challenge of Integrating UAS Into...
Manned Systems
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Manufacturing & Prototyping
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing