JAXA MINERVA-II1 Rovers Achieve Asteroid Landing, Autonomy, Image and Data Capture
MINERVA-II1 rovers land on the surface of an asteroid and achieve first autonomous movement and image capture on asteroid surface.
Japan Aerospace Exploration Agency (JAXA) officials have released the first images from two unmanned rovers that landed safely on the surface of asteroid Ryugu just days ago.
The compact MINERVA-II1 rovers, Rover-1A and Rover-1B, separated from the Hayabusa2 spacecraft on Sept. 21 at 13:06 Japan Standard Time (JST) and landed on Ryugu with a bounce. The two rovers are in good condition and are transmitting images and data, JAXA officials reveal. At least one of the two rovers is moving on the asteroid surface, the data confirms.
MINERVA-II1 is already credited with two milestones: the first mobile exploration robot to land on the surface of an asteroid and achieving the first autonomous movement and image capture on an asteroid surface.
MINERVA-II1 is being called “the world’s first manmade object to explore movement on an asteroid surface,” JAXA officials say.
The two MINERVA-II1 rovers (Rover-1A, 1B) are hexagonal in shape with a diameter of 18 cm, height of 7 cm, and weight of roughly 1.1 kg each. The pair were developed at the JAXA Institute of Space and Astronautical Sciences in collaboration with the following manufacturers, universities, and organizations: Aichi University of Technology, University of Aizu, Addnics Corp., Antenna Giken Co. Ltd, ELNA, CesiaTechno, University of Tokyo, Tokyo Denki University, Digital Spice Corp, Nittoh Inc., Maxon Japan, DLR, and ZARM.
Rover-1A has four cameras, and Rover-1B has three cameras, with which to produce a stereo image of the surface of Ryugu. Projections from the rover edge that look like thorns are temperature sensors to measure the surface temperature of Ryugu. Additional instruments on the rovers include optical sensors, an accelerometer, and a gyroscope.
The rovers communicate with Hayabusa2 using the repeater (OME-E) installed on the main spacecraft. The maximum communication speed is 32 kbps. Data received by Hayabusa is then transferred to the Earth. The OME-E will also be used for communication with the German/French lander, MASCOT, scheduled for deployment in October.
The main feature of MINERVA-II1 is the ability for the rovers to move on the surface of Ryugu by utilizing a hopping mechanism. Within the rover is a motor that rotates and causes the rover to “hop” (jump up) during the rebound, enabling the rovers to move across the asteroid surface and explore multiple areas. On Ryugu, MINERVA-II1 moves autonomously, determining what should be done for the exploration by itself.
Gravity on the surface of Ryugu is very weak, so a rover propelled by normal wheels or crawlers would float upwards as soon as it started to move. The hopping mechanism was adopted for moving across the surface of such small celestial bodies. The rover is expected to remain in the air for up to 15 minutes after a single hop before landing, and to move up to 15 m horizontally.
Courtney E. Howard is editorial director and content strategist at SAE International, Aerospace Products Group. Contact her by e-mail at
Top Stories
INSIDERDefense
This Robot Dog Detects Nuclear Material and Chemical Weapons
INSIDERManned Systems
Testing the Viability of Autonomous Laser Welding in Space
INSIDERTest & Measurement
Germany's New Military Surveillance Jet Completes First Flight
NewsUnmanned Systems
The Unusual Machines Approach to Low-Cost Drones and Drone Components
INSIDERSoftware
Accelerating Climate-Compatible Aircraft Design with AI
INSIDERManufacturing & Prototyping
Webcasts
Software
Best Practices for Developing Safe and Secure Modular Software
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management...
Aerospace
Countering the Evolving Challenge of Integrating UAS Into...
Manned Systems
How Pratt & Whitney Uses a Robot to Help Build Jet Engines
Manufacturing & Prototyping
Scaling Manufacturing and Production for 'Data as a Service' Electric Drone
Test & Measurement
A Quick Guide to Multi-Axis Simulation and Component Testing