Three Times More Power Density the Charm for Lockheed Martin Cooling System
Scientists and engineers at Lockheed Martin's Advanced Technology Center (ATC) have packed three times the power density into a key satellite cooling system whose previous design it says was already the lightest in its class. This project continues the company’s effort to reduce component size, enabling compact, higher-power spacecraft payloads, and smaller sensor platforms back on Earth.
Highly sophisticated electronics like satellite sensors and cameras need to be cooled to detect what they’re designed to capture, even to temperatures as low as -320°F. The company describes the microcryocooler operating like a refrigerator, drawing heat out of sensor systems and delivering cooling to small satellites
Smaller cryocoolers mean more affordable satellites and launches. With higher power, this microcryocooler enables larger, more sensitive IR sensors, which is useful for very high-resolution images. Despite its increased capability, the component’s power efficiency rating is roughly the same as lower-power coolers.
The High Power Microcryocooler is a high-reliability system designed to provide continuous operation over a lifespan in excess of 10 years. It is claimed to be the industry’s highest power density cryocooling system, delivering more than 150 W/kg, a significant advancement from the 30-60 W/km rating most space-rated cryocoolers deliver. It also weighs less than a pound, which is less than half the weight of similar cooling systems.
“Our previous design was a revolution in size, and now we’re taking it further and packing it with increased power. This will make a difference for technology in space, on naval ships, and aboard aircraft,” said Dr. Jeffrey Olson, a research scientist at Lockheed Martin’s ATC.
Top Stories
INSIDERDefense
Army Launches CMOSS Prototyping Competition for Computer Chassis and Cards
ArticlesElectronics & Computers
Microchip’s New Microprocessor to Enable Generational Leap in Spaceflight...
INSIDERSoftware
The Future of Aerospace: Embracing Digital Transformation and Emerging...
ArticlesMaterials
Making a Material Difference in Aerospace & Defense Electronics
EditorialSoftware
Making Machines Software-Defined No Simple Task
INSIDERRF & Microwave Electronics
Germany's New Military Surveillance Jet Completes First Flight
Webcasts
Power
Phase Change Materials in Electric Vehicles: Trends and a Roadmap...
Automotive
Navigating Security in Automotive SoCs: How to Build Resilient...
Automotive
Is Hydrogen Propulsion Production-Ready?
Unmanned Systems
Countering the Evolving Challenge of Integrating UAS Into Civilian Airspace
Power
Designing an HVAC Modeling Workflow for Cabin Energy Management and XiL Testing
Defense
Best Practices for Developing Safe and Secure Modular Software